




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第1、2节 共价键 分子的立体结构【学习目标】1、认识共价键的主要类型键和键;会用电子式表示共价键的形成;理解共价键的形成条件及其本质;2、认识键能、键长、键角等概念,能用它们说明简单分子的某些性质;认识等电子原理,了解其应用。3、认识共价分子立体结构的多样性和复杂性;初步认识价层电子对互斥模型,能用vsepr模型预测简单分子或离子的立体结构;4、认识杂化轨道理论的要点,进一步了解有机化合物中碳的成键特征,能根据杂化轨道理论判断简单分子或离子的构型,培养分析、归纳、综合的能力和空间想象能力;了解配位键、配位化合物的概念及表示方法。【要点梳理】要点一:共价键1、共价键的实质:共用电子对与原子核之间的静电作用使原子结合起来说明:原子之间通过核间高概率出现的共用电子对所产生的强烈相互作用2、共价键形成过程的表示方法说明:由于在化学反应中,一般是原子的最外层电子发生变化,所以,为了简便起见,我们可以在元素符号周围用小黑点(或)来表示原子的最外层电子。这种式子叫做电子式例如: 说明:注意书写分子的电子式和分子形成过程的电子式的区别。要点诠释:电子式的书写常见错误归纳(1)漏写没有参加成键的电子对 (2)漏写或多加 及错写电荷数(3)漏标离子所带的电荷数或与化合价混淆 (4)将相同离子错误合并(5)电子式中微粒排列错误 (6)电子(电子对)排列错误 (7)用电子式表示形成过程时错误化学方程式中的反应物与生成物之间用“”连接,而不用“”连接。 3、共价键的特征饱和性:是指每个原子成键的总数或以单键连接的原子数目是一定的,因为共价键是有原子轨道重叠和共用电子形成的,而每个原子能提供的轨道和成单电子数目是一定的。 例如:当两个h原子结合成h2分子后,不可能再结合第三个h原子形成“h3分子”。同样,甲烷的化学式是ch4,说明碳原子最多能与四个氢原子结合。这些事实说明,形成共价键时,每个原子有一个最大的成键数,每个原子能结合其他原子的数目不是任意的。方向性:是指一个原子与周围原子形成的共价键具有一定的方向,角度。这是由于原子轨道(s轨道除外)有一定的方向性,它和相邻原子的轨道重叠要满足最大重叠原理。说明:共价键的方向性使共价分子都具有一定的空间构型。例如,在硫原子和氢原子结合生成h2s分子时,因为硫原子的最外层两个不成对的3p电子的电子云互成直角,氢原子的1s电子云要沿着直角的方向跟3p电子云重叠,这样h2s分子中两个共价键的夹角应接近90度。4、共价键的类型(1)键:(以“头碰头”重叠形式)a、特征:以形成化学键的两原子核的连线为轴作旋转操作,共价键的图形不变,轴对称图形。b、种类:s-s 键 s-p 键 p-p 键(2)键:(以“肩并肩”重叠形式)特征:每个键的电子云有两块组成,分别位于有两原子核构成平面的两侧,如果以它们之间包含原子核的平面为镜面,它们互为镜像,这种特征称为镜像对称。说明:a、键比键强度大,键易断裂。例如:烯烃比烷烃活泼。b、只有当两原子之间形成重键的时候才会出现键;原子间多重健中只有一个键其它均为键。5、共价键的形成条件一般非金属元素的原子之间通过共价键结合。如非金属气态氢化物、水、酸、非金属氧化物等物质中的元素都以共价键结合。共价键存在于非金属单质、共价化合物中,也可存在于离子化合物中(例如,氢氧化钠、过氧化钠、硫酸钾等)。说明:电负性相同或相差很小的非金属元素原子之间形成共价键。一般成键原子有未成对电子(自旋相反)。成键原子的原子轨道在空间重叠。要点二:键参数1、键能:气态基态原子形成1mol化学键所释放出的最低能量。通常取正值。单位:kj/mol说明:键能越大,形成化学键放出的能量越大,化学键越稳定;含有该化学键的分子越稳定。例如:氢化物的稳定性hfhclhbrhi2、键长:形成共价键的两原子间的核间距。单位:1pm(1pm10-12m)说明:键长越短,共价键越牢固,形成的物质越稳定3、键角:多原子分子中的两个共价键之间的夹角。例如:co2 结构为,键角为180;为直线形分子。h2o键角105;形ch4键角10928;正四面体注意:键能、键长、键角是共价键的三个参数键能、键长决定了共价键的稳定性;键长、键角决定了分子的空间构型。要点诠释:共价键强弱的判断规律1、电子云的重叠程度不同键的强弱不同。例如:键比键强度大。2、原子间共用电子对越多,共价键越强。例如:碳碳键的键能乙烷为348 kj/mol,乙烯是 615 kj/mol,乙炔是837 kj/mol。3、成键原子半径之和越小,共价键越强。例如:已知r(f)r(cl)r(br)r(i),所以有下列共价键的大小关系:hfhclhbrhi要点三:等电子原理等电子体概念:原子数相同,价电子数也相同的微粒(等电子体结构相似、性质相似)。如:co和n2,ch4和nh4+要点四、常见多原子分子的立体结构: ch4 nh3 ch2o co2 h2o 原子数目化学式分子结构键角中心原子3co2 直线形180无孤对电子h2ov形105有孤对电子4ch2o平面三角形120无孤对电子nh3 三角锥形107有孤对电子5ch4 正四面体形10928无孤对电子【小结】同为三原子分子或四原子分子,分子的空间构型不同。所以多原子分子的立体结构不但与所连原子数目有关,还与其他因素(比如中心原子是否有孤对电子及孤对电子的数目)有关要点五、价层电子对互斥模型:用中心原子是否有孤对电子及孤对电子的数目,预测分子的立体结构价层电子对互斥模型认为分子的立体结构是由于分子中的价电子对(成键电子对和孤对电子对)相互排斥的结果。中心原子价层电子对(包括成键电子对和未成键的孤对电子对)的互相排斥作用,使分子的几何构型总是采取电子对相互排斥最小的那种构型,即分子尽可能采取对称的空间构型这种模型把分子分为两类:1、中心原子上的价电子都用于形成共价键(中心原子无孤对电子)中心原子无孤对电子,分子中存在成键电子对与成键电子对间的相互排斥,且作用力相同,分子的空间构型以中心原子为中心呈对称分布。如co2、ch2o、ch4、hcn等分子。它们的立体结构可用中心原子周围的原子数来预测:abn立体结构范例n=2直线形co2 n=3平面三角形ch2on=4正四面体形ch4 2、中心原子上有孤对电子(未用于形成共价键的电子对)的分子。中心原子上有孤对电子,分子中存在成键电子对与成键电子对间的相互排斥、成键电子对与孤对电子对间的相互排斥、孤对电子对与孤对电子对间的相互排斥。孤对电子要占据中心原子周围的空间,并参与互相排斥,使分子呈现不同的立体构型如h2o和nh3,中心原子上的孤对电子也要占据中心原子周围的空间,并参与互相排斥,中心原子周围的键+孤对电子数=4,所以nh3与h2o的vsepr理想模型都是四面体形。因而h2o分子呈v型,nh3分子呈三角锥形。【小结】电子对的空间构型(vsepr理想模型)与分子的空间构型存在差异的原因是由于孤对电子没有参与成键,且孤对电子对比成键电子对更靠近原子核,它对相邻成键电子对的排斥作用较大,要使电子对相互排斥最小,那么h2o 、nh3 、ch4分子相应的键角必然逐渐变大。要点诠释:价层电子对互斥模型小结1、同为三原子分子或四原子分子,其分子空间构型不同,是由于分子中的成键电子对及中心原子上的孤对电子对相互排斥,结果趋向尽可能彼此远离,以减小斥力。排斥力:孤对电子对与孤对电子对孤对电子对与成键电子对成键电子对与成键电子对例如:h2o和nh3中心原子上分别有2对和1对孤对电子,跟中心原子周围的键加起来都是4,它们相互排斥形成四面体。由于分子的中心原子上未成键的孤对电子对对成键电子对之间的排斥力较强,所以使h2o分子中2个oh键和nh3分子中3个nh键的空间分布发生一点变化,它们的键角从10928分别被压缩到105和107。2、应用vsepr理论判断分子或离子的构型对于一个abn型的共价型分子,中心原子a周围电子对排布的几何形状,主要取决于中心原子a的价电子层中的电子对数(成键电子对数+孤对电子数),这些电子对的位置倾向于分离得尽可能远,使它们之间的斥力最小。根据中心原子的孤对电子对的数目及中心原子结合的原子的数目确定。若中心原子周围的原子数与孤对电子对数之和分别为2、3、4,则vsepr理想模型(注:与分子的立体结构不同)分别是直线形、平面形、四面体形,由于孤对电子对成键电子的斥力影响较大,所以含有孤对电子对的分子中键角比理想模型的键角要小一些。例如:nh3与h2o的vsepr理想模型都是四面体形(10928),但分子的立体结构分别是三角锥形(107)、v形(105)要点六、杂化轨道理论:能量相近的原子轨道重新组合1、杂化的概念:在形成多原子分子的过程中,中心原子的若干能量相近的原子轨道重新组合,形成一组新的轨道,这个过程叫做轨道的杂化,产生的新轨道叫杂化轨道。特点:杂化前后轨道数目不变。杂化后轨道伸展方向,形状发生改变。2、甲烷分子的杂化轨道的形成:(sp3杂化)甲烷分子的立体构型:空间正四面体,分子中的ch键是等同的,键角是10928 中心原子价电子构型 c:2s22p2 碳原子的4个价层原子轨道是3个相互垂直的2p轨道和1个球形的2s轨道,用它跟4个氢原子的1s原子轨道重叠,不可能得到四面体构型的甲烷分子。鲍林提出杂化轨道理论:形成甲烷分子时,中心原子碳的2s和2px、2py、2pz四条原子轨道发生混杂,形成一组新的轨道,即四个相同的sp3杂化轨道,夹角10928。这些sp3杂化轨道不同于s轨道,也不同于p轨道。当碳原子跟4个氢原子结合时,碳原子以4个sp3杂化轨道分别与4个氢原子的1s轨道重叠,形成4个ch键,因此呈正四面体的分子构型。3、其他形式的杂化:根据参与杂化的s轨道与p轨道的数目,除了有sp3杂化轨道外,还有sp2 杂化和sp杂化,sp2 杂化轨道表示由一个s轨道与两个p轨道杂化形成的,sp杂化轨道表示由一个s轨道与一个p轨道杂化形成的碳原子的 sp2 杂化(以乙烯为例)乙烯的中心原子c在轨道杂化时,有1个p轨道未参与杂化,只是的s轨道与2个p轨道发生杂化,形成3个相同的sp2杂化轨道,sp2杂化轨道分别指向平面三角形的三个顶点,杂化轨道间夹角为120。杂化轨道与2个h原子和另外一个c原子形成2个ch键和1个cc键,未杂化p轨道垂直于sp2杂化轨道所在平面,与另外的c原子形成cc p键。碳原子的 sp杂化(以乙炔为例)乙炔的中心原子c在轨道杂化时,有2个p轨道未参与杂化,只是的s与1个p轨道发生杂化,形成2个相同的sp杂化轨道,杂化轨道间夹角为180。杂化轨道与1个h原子和另外一个c原子形成1个ch键和1个cc键,未杂化2个p轨道垂直于sp杂化轨道所在平面,与另外的c原子形成2个cc p键。【小结】杂化轨道在角度分布上比单纯的s或p轨道在某一方向上更集中,从而使它与其它原子的原子轨道重叠的程度更大,形成的共价键更牢固。要点诠释:杂化轨道与分子的立体结构1、判断杂化轨道的数目和杂化方式中心原子的孤对电子对数与相连的其他原子数之和,就是杂化轨道数。例如:nh3中心原子n上有一对孤对电子,所以杂化轨道数为1+3=4,即n原子采用sp3杂化;becl2中心原子be上没有孤对电子,所以杂化轨道数为0+2=2,即be原子采用sp杂化;h2o中心原子o上有2对孤对电子,所以杂化轨道数为2+2=4,即o原子采用sp3杂化2、分子的立体结构三种杂化轨道的轨道形状,sp杂化夹角为180的直线型杂化轨道,例如becl2、c2h2;sp2 杂化轨道为120的平面三角形,例如bf3、c2h4;sp3杂化轨道为10928的正四面体构型,例如ch4、ccl4中心原子孤对电子数化学式杂化轨道数杂化轨道类型分子结构0ch4 0+4sp3 正四面体形c2h4 0+3sp2 平面三角形bf3 0+3sp2 平面三角形ch2o0+3sp2 平面三角形c2h2 0+2sp直线形co2 0+2sp直线形cs2 0+2sp直线形1so2 1+2sp2 v形2h2o2+2sp3 v形3、微粒的空间构型小结(1)、直线形:clbecl、oco、cs2、c2h2等,中心原子的电子云以sp杂化成键。(2)、v形:h2o、h2s、nh2-是中学比较常见的,中心原子周围有四对电子,电子对的构型必然是四面体形,这样微粒的空间构型就是v形了;so2、o3这些是中学中不常见的,中心原子均是以sp2杂化的形式成键的。(3)、三角锥形:nh3、nf3、h3o+、pcl3等,中心原子都有1对孤对电子,以sp3杂化成键,电子对的构型为四面体形,微粒构型为三角锥形。(4)、平面三角形:bf3,ch3+,中心原子以sp2杂化形式成键,中心原子周围的电子对数目为3,所以电子对的空间构型是平面三角形,这样微粒的空间构型就是平面三角形,键角为120(5)、四面体形: 、正四面体形:p4(是空心正四面体,有六条化学键,键角为60)、ch4、ccl4、nh4+、(是顶点原子与中心原子成有中心的正四面体,中心原子一定以sp3杂化成键,键角一定是10928) 、四面体:与正四面体ch4相似,只是顶点的原子有不同,但是属于一类,如:ch3cl、ch2cl2、chcl3等。键角与10928相近)(6)、三角双锥:pcl5(7)、正八面体:sf6、pcl6-等(8)、某些分子得到质子后的构型的变化:a、h2o得到一个h+成h3o+,构型由v形变成三角锥形b、nh3得到一个h+成nh4+,构型有三角锥形成正四面体形c、pcl5失去一个cl-,构型由三角双锥成正四面体d、pcl5得到一个cl-成pcl6-,构型由三角双锥成正八面体要点七、配合物理论简介1、配位键概念:由一个原子单方向提供共用电子对给另一原子共用所形成的共价键。cuso4 cucl22h2ocubr2 naclk2so4 kbr固体颜色白色绿色深褐色白色白色白色溶液颜色天蓝色天蓝色天蓝色无色无色无色前三种溶液呈天蓝色原因就是cu2+在水溶液中与水分子通过配位键结合成四水合铜离子。其中cu2+为接受电子对的一方,h2o为提供电子对的一方。表示方法a b电子对给予体 电子对接受体形成条件:其中一个原子必须提供孤对电子。另一原子必须有接受孤对电子的轨道。常见的含有配位键的分子或离子的形成过程:h3o+ nh4+ 注意:在nh4+中,虽然有一个nh键形成过程与其它3个nh键形成过程不同,但是一旦形成之后,4个共价键就完全相同。2、配位化合物概念:金属离子或原子与某些分子或离子以配位键结合而形成的化合物称为配位化合物,简称配合物。配合物的组成 常见配合物的生成 a 向硫酸铜溶液里逐滴加入氨水,先形成难溶的氢氧化铜沉淀,继续滴加难溶物溶解,得到深蓝色的透明溶液 实验中发生的两个反应的离子方程式蓝色沉淀 深蓝色溶液氢氧化铜与足量氨水反应后溶解是因为生成cu(nh3)42+ b向盛有氯化铁溶液的试管中滴加1滴硫氰化钾溶液 血红色【小结】形成配位化合物时某些性质发生改变,比如颜色、溶解度等。配位键的强度有大有小,因而有的配位化合物很稳定,有的很不稳定。要点诠释:配位化合物小结cu(nh3)4so4硫酸化四氨合铜cu中心原子 nh3配位体 n配位原子 4配位数1、中心离子或原子(也称形成体):有空轨道主要是一些过渡金属,如铁、钴、镍、铜、银、金、铂等金属元素的离子;或是具有高氧化数的非金属元素,硼,硅、磷等,如nabf4 中的b、k2sif6中的si和nh4pf6中的p;或是不带电荷的中性原子,如ni(co)4, fe(co)5中的ni, fe都是中性原子2、配位体和配位原子:有孤对电子常见的配位体:含氮配位体nh3、ncs-;含硫配位体scn-;含卤素配位体 f-、cl-、br-、i-;含碳配位体cn-、co;含氧配位体h2o、oh-;羧酸、醇、醚等3、配位数:与中心离子直接以配位键结合的配位原子个数例:alf63- 配位数6 、 cu(nh3)4so4 配位数4 中心离子的电荷高,对配位体的吸引力较强,有利于形成配位数较高的配合物。中心离子半径越大,其周围可容纳配体就越多,配位数越大。4、配合物的命名:关键在于配合物内界(即配离子)的命名。命名顺序:自右向左:配位体数(即配位体右下角的数字)配位体名称“合”字或“络”字中心离子的名称中心离子的化合价。:配位阴离子配合物-配位阴离子“酸”外界k2sif6 六氟合硅酸钾kptcl5(nh3)五氯一氨合铂酸钾na3alf6六氟合铝酸三钠:配位阳离子配合物 “某化某”或“某酸某” co(nh3)6br3三溴化六氨合钴cu(nh3)4cl2二氯化四氨合铜:中性配合物ptcl2(nh3)2二氯二氨合铂ni(co)4四羰基合镍【典型例题】类型一:有关共价键等概念的辨析例1 以下说法中正确的是( )在水中氢、氧原子间均以化学键相结合金属和非金属化合形成离子键离子键是阳离子、阴离子的相互吸引根据电离方程式;hcl=h+cl-,判断hcl分子中存在离子键h2分子和cl2分子的反应过程是h2、cl2分子里共价键发生断裂生成h、cl原子,而后h、cl原子形成离子键的过程a无 b c d【思路点拨】共价键指原子间通过共用电子对形成的化学键,实质就是成键原子电子云的重叠,可以用三个键参数来描述共价键。根据重叠方式的不同,可分为和键,两种键的牢固程度不同,键易断裂。【答案】a【解析】水中存在分子内h、o原子之间的相互作用,分子间的h、o原子也相互作用。而化学键只指分子内相邻原子间强烈的相互作用。离子键不是存在于任何金属和非金属微粒间,只是活泼金属和活泼非金属化合时,才可形成离子键。离子键化合物中,阴阳离子间存在相互作用。但不单指吸引力还有相互排斥力。hcl分子中不存在离子,它属于共价化合物,分子中没有离子键。化学反应的本质是旧键断裂新键形成的过程,但hcl中存在共价键而非离子键。【总结升华】离子键与共价键的比较离子键共价键定义阴、阳离子通过静电力形成的强烈的相互作用原子间通过共用电子对形成的强烈的相互作用形成条件a活泼金属(、)与活泼非金属(、)之间例如:nacl、mgob金属离子(或nh4)与带电原子团之间例如:naoh、nh4no3说明:成键原子对应元素的电负性差大于1.7时。a非金属与非金属原子之间例如:h2(单质)、hcl(化合物)b某些不活泼金属与非金属之间例如:alcl3说明:成键原子对应元素的电负性差小于1.7时。离子化合物一定有例如:nacl、mgo可能有例如:naoh、na2o2、nh4cl、nh4no3 共价化合物一定无一定有例如:hcl、h2o、h2o2、co2注意:a、离子化合物中一定含有离子键,也可能含有共价键b、共价化合物中一定含有共价键,一定不含有离子键c、离子键只存在于离子化合物中,不存在共价化合物中d、共价键可能存在于单质、离子化合物和共价化合物中 举一反三:【变式1】下列关于丙烯(ch3ch =ch2)的说法正确的( )a丙烯分子有8个键,1个键b丙烯分子中3个碳原子之间都是键 c丙烯分子双键包括2个键d丙烯分子中3个碳原子在同一直线上【答案】a【解析】单键一定是键,多重键中只有一个键.【变式2】下列物质的分子中既有键,又有键的是( ) hcl h2o n2 h2o2 c2h4 c2h2 a b c d【答案】d【解析】共价键尽可能沿着原子轨道重叠最大的方向形成,这样原子轨道重叠越多,形成的键越牢固。其中键比键牢固。当两个原子间能形成多个共用电子对时,先形成一个键,另外的原子轨道只能形成键。n2中有三个共价键:一个键,两个键;c2h4中碳碳原子之间有两个共价键:一个键,一个键;c2h2中碳碳原子之间有三个共价键:一个键,两个键。类型二:等电子体及8电子结构例2 下列各分子中所有原子都满足最外层为8电子结构的是( )abecl2 bpcl3 cpcl5dn2【思路点拨】本题考查8电子结构,较简单,明确分子结构后对最外层电子加和即可。【答案】bd【解析】单个氯原子最外层上有7个电子,当它与另一成键原子共用一对电子时,就成了最外层8电子结构,因此,在选项a、选项b、选项c中的三种化合物中,氯原子最外层都满足8电子结构每个be原子最外层上有2个电子,若在反应中当它失去这2个电子形成离子化合物,则它的次外层变成了最外层,这时该层上只有2个电子;若与cl2形成的化合物为共价化合物,则be原子与2个cl原子共用2个电子对,最外层上也不是8个电子;总之选项a不合题意每个p原子最外层上有5个电子,当形成pcl3分子时共用了3对电子,使得p原子最外层电子数恰好是8电子结构;当它与cl元素形成pcl5分子时共用了五对电子,使得p原子最外层电子数是10个电子,因此,选项b符合题意,选项c则不合题意每个n原子最外层有5个电子,当n原子与n原子形成n2分子时共用了3对电子,使得它们的最外层电子数皆成为8电子结构,选项d符合题意【总结升华】8电子结构的判断技巧:可以根据价电子数与共价键数目之和快速计算. 价电子数与共价键数目之和=8举一反三:【变式1】六氧化四磷的分子结构中只含有单键,且每个原子的最外层都满足8个电子结构,则该分子中含有的共价键数目是( )a10 b12 c24 d28【答案】b【解析】p4o6中每个原子单独满足8电子结构时需要80个电子,10个原子可提供的成键电子数56个,形成一个单键需2个电子,所以分子中含有共价键数目为(80-56)/2=12【变式2】下列分子中所有原子都满足8电子结构的是( )a光气(cocl2) b六氟化硫(sf6) c二氟化氙 d三氟化硼【答案】a【解析】a光气cocl2c:4+4=8 o:6+2=8 cl:7+1=8 bsf6s:6+6=12 f:7+1=8cxef2xe:8+2=10 f:7+1=8dbf3b:3+3=6 f:7+1=8例3 科学规定:分子中原子个数和价电子数都相等的互为等电子体;等电子体的结构性质均相似。最新研究表明生命起源于火山爆发,是因为火山爆发产生的气体中含有1%的羰基硫(cos),已知羰基硫分子中所有原子的最外层都满足8电子结构,结合等电子原理,判断有关说法不正确的是( )a羰基硫与co2是等电子体b羰基硫的电子式为: c羰基硫沸点比co2低d羰基硫分子中三个原子处于同一直线上【答案】c【解析】等电子体的理论,明确的给出了提示;cos 与co2为等电子体。那么cos的结构与co2存在相似,就会顺利确定。举一反三:【变式1】“笑气”(n2o)是人类最早应用于医疗的麻醉剂之一。有关理论认为n2o与co2分子具有相似的结构(包括电子式),两者互为 关系;又已知n2o分子中氧原子只与一个氮原子相连,则n2o的电子式可表示为 ,由此可知它 (填“含有”或“不含”)非极性键。【答案】等电子体 含有 类型三:键参数的概念及其应用例4 (1)关于键长、键能和键角,下列说法中不正确的是( ) a键角是描述分子立体结构的重要参数 b键长的长短与成键原子的半径和成键数目有关 c键能越大,键长越长,共价化合物越稳定 d键角的大小与键长的长短、键能的大小无关 ecc键的键能等于cc键键能的2倍 f因为oh键的键能小于hf键的键能,所以o2、f2与h2反应的能力逐渐增强 (2)nn键的键能是946 kjmol,nn键的键能为193 kjmol,经过计算后可知n2中_键比_(填“”或“”)键稳定。【思路点拨】本题考查化学键及其中共价键的参数。明确物质中含有化学键的种类、共价键各项参数的意义。【答案】(1)c、e (2) 【解析】(1)键角是描述分子立体结构的重要参数,如h2o中的2个ho键的键角为105,故h2o为角形(v形)分子,a正确;键长的长短与成键原子的半径有关,如cl的原子半径小于i的原子半径,clcl键的键长小于ii键的键长,此外,键长还和成键数目有关,如乙烯分子中cc键的键长比乙炔分子中cc键的键长要长,b正确;键能越大,键长越短,共价键越强,共价化合物越稳定,故c错误;键角的大小取决于成键原子轨道的夹角,d正确;cc键的键能为615 kjmol1,cc键的键能为347.7 kjmol1,二者并不是2倍的关系,e错误:oh键的键能为462.8 kjmol1,hf键的键能为568 kjmol1,oh键的键能小于hf键的键能,意味着形成这些键时放出的能量依次增大,化学键越来越稳定,o2、f2跟h2反应的能力依次增强,f正确。 (2)nn键中含有1个键和2个键,键的键能=376.5 kjmol。因为nn键中键的键能比键的键能大,所以n2中键比键稳定。【总结升华】键能、键长决定了共价键的稳定性;键长、键角决定了分子的空间构型。举一反三:【变式1】下列说法中正确的是( )an- c的键长比n-n的键长小 bh2o键角是180,nh3是平面三角形ch-h比h-f键长短,所以h-h键键能大dc=c键键能比c-c键大,所以乙烯比乙烷更稳定【答案】c 【解析】键长的大小可通过比较半径得出;c=c键是1个键和1个键,其中的键不稳定,容易断裂;h2o键角是105,nh3是三角锥形。类型四:应用vsepr理论预测分子或离子的构型例5 用价层电子对互斥模型推测下列分子或离子的空间构型。becl2_scl2_so32-_sf6_【思路点拨】vsepr模型预测分子立体结构方法:首先确定中心原子的价层电子对数,然后确定中心原子有无孤对电子,再结合实际例子分析。若中心原子周围的原子数与孤对电子对数之和分别为2、3、4,则vsepr理想模型(注:与分子的立体结构不同)分别是直线形、平面形、四面体形,再判断分子或离子的空间构型【答案】直线形 v形 三角锥形 正八面体形【解析】becl2分子中心原子be,孤对电子数+结合的原子数=0+2=2,vsepr理想模型为直线形,无孤对电子,vsepr理想模型就是其空间构型,所以becl2分子为直线形。scl2分子中心原子s,孤对电子数+结合的原子数=2+2=4,vsepr理想模型为四面体形,有2对孤对电子,所以scl2分子空间构型为v形。so32-离子中心原子s,孤对电子数+结合的原子数=1+3=4,vsepr理想模型为四面体形,有1对孤对电子,so32-离子空间构型为三角锥形。sf6分子中心原子s,孤对电子数+结合的原子数=0+6=6,vsepr理想模型为八面体形,无孤对电子,vsepr理想模型就是其空间构型,所以sf6分子为正八面体形【总结
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年事业单位工勤技能-湖南-湖南房管员四级(中级工)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-湖南-湖南医技工三级(高级工)历年参考题库含答案解析
- 2025年事业单位工勤技能-湖南-湖南保安员三级(高级工)历年参考题库典型考点含答案解析
- 数字化会员服务在2025年零售行业的应用与发展研究报告
- 2025-2030中国纺纱纸锥行业应用潜力与投资盈利预测报告
- 2025年事业单位工勤技能-海南-海南铸造工一级(高级技师)历年参考题库含答案解析
- 2025年储能电池在储能电站储能系统智能化监控中的应用研究报告
- 金融行业审计智能化路径探析:2025年人工智能算法应用报告
- 2025-2030中国笔制造行业发展前景与趋势预测分析报告
- 2025-2030中国立体蓝牙耳塞市场供需现状与销售渠道规划报告
- 2025年发展对象考试题库附含答案
- 2025年兵团基层两委正职定向考录公务员试题(附答案)
- 2025年新专长针灸考试题及答案
- 高三生物一轮复习课件微专题5电子传递链化学渗透假说及逆境胁迫
- DBJ50-T-306-2024 建设工程档案编制验收标准
- 2025四川雅安荥经县国润排水有限责任公司招聘5人笔试历年参考题库附带答案详解
- 2025中国银行新疆区分行社会招聘笔试备考试题及答案解析
- 污水采样培训课件
- 药品医疗器械试题及答案
- 子宫内膜类器官构建与临床转化专家共识解读 2
- 幼师培训:如何上好一节课
评论
0/150
提交评论