



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
双十字相乘法分解形如ax2+bxy+cy2+dx+ey+f 的二次六项式 在草稿纸上,将a分解成mn乘积作为一列,c分解成pq乘积作为第二列,f分解成jk乘积作为第三列,如果mq+np=b,pk+qj=e,mk+nj=d,即第1,2列和第2,3列都满足十字相乘规则。则原式=(mx+py+j)(nx+qy+k)例:3x+5xy-2y+x+9y-4=(x+2y-1)(3x-y+4)分解二次五项式要诀:把缺少的一项当作系数为0,0乘任何数得0,例:ab+b2+a-b-2=01a2+ab+b2+a-b-2=(0a+b+1)(a+b-2)=(b+1)(a+b-2)分解四次五项式提示:设x2=y,用拆项法把cx2拆成mx2与ny之和。例:2x4+13x3+20x2+11x+2=2y2+13xy+15x2+5y+11x+2=(2y+3x+1)(y+5x+2)=(2x2+3x+1)(x2+5x+2)=(x+1)(2x+1)(x2+5x+2)因式分解法分解二次三项式时,我们常用十字相乘法对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式例如,分解因式2x2-7xy-22y2-5x+35y-3我们将上式按x降幂排列,并把y当作数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3),可以看作是关于x的二次三项式对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为即-22y2+35y-3=(2y-3)(-11y+1)再利用十字相乘法对关于x的二次三项式分解所以原式=x+(2y-3)2x+(-11y+1)=(x+2y-3)(2x-11y+1)这就是所谓的双十字相乘法也是俗称的“主元法”用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是:用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一列、第三列构成的十字交叉之积的和等于原式中的dx双十字相乘法(因式分解)分解二次三项式时,我们常用十字相乘法对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式可分解二次三项式时,我们常用十字相乘法对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式例如,分解因式我们将上式按x降幂排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3),可以看作是关于x的二次三项式对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为-22y2+35y-3=(2y-3)(-11y+1)再利用十字相乘法对关于x的二次三项式分解原式=x+(2y-3)2x+(-11y+1)=(x+2y-3)(2x-11y+1)上述因式分解的过程,实施了两次十字相乘法如果把这两个步骤中的十字相乘图合并在一起,可得到下图:它表示的是下面三个关系式:(x+2y)(2x-11y)=2x2-7xy-22y2;(x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3这就是所谓的双十字相乘法用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是:(1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx分解因式:(1)x2-3xy-10y2+x+9y-2;(2)x2-y2+5x+3y+4;(3)xy+y2+x-y-2;(4)6x2-7xy-3y2-xz+7yz-2z2(1)原式=(x-5y+2)(x+2y-1)(2)原式=(x+y+1)(x-y+4)(3)原式中缺x2项,可把这一项的系数看成0来分解原式=(y+1)(x+y-2)(4)原式=(2x-3y+z)(3x+y-2z)(4)中有三个字母,解法仍与前面的类似1、x2-y22yz-z22、(1-xy)2-(y-x)23、x2y2-x2-y2-6xy44、x33x2-45、4x28x36、9x2-30x257、39x2-38x88、4x2-6ax18a29、20a3bc-9a2b2c-20ab3c10、x2ax-12(xb)(x-2)11、2x1是不是4x25x-1的因式?12、若x2是x2kx-8的因式,求k13、若2x311x218x9(x1)(ax3)(xb),则a-b14、若a2b2c24a-8b-14c690,求a2b-3c的值15、mx2-m2-x116、a2-1-2abb217、ab(x2-y2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年物业客服专员考试题集及答案
- 2025年安全员招聘高频面试题解析
- 制造业产品质量协议
- 2025年土地整治项目管理员中级考试模拟题及高频题库
- 2025年能源监测工程师综合知识技能考察试卷及答案解析
- 2025年绿色建筑技术员职业资格考试试题及答案解析
- 2025年金融市场分析师资格考试试题及答案解析
- 2025年教师资格认证考试试题及答案解析
- 2025年电子商务运营经理面试问题及答案
- 2025年建筑幕墙工程师职业资格考试试题及答案解析
- 传媒入股协议合同
- 《有机化学》课程标准
- 《高效能电机》课件
- 汽车维护与保养 任务工单1 发动机油液与滤清器检查及更换
- 外科腹腔镜手术护理
- 非专用化妆包项目质量管理方案
- 工程类公路培训课件
- 2024年度中药的性能《四气五味》课件
- 太阳能光伏发电项目EPC工程设计施工范围及主要工程量
- 《汽车电工电子》课程标准
- 2024关于进一步提升基层应急管理能力的意见学习解读课件
评论
0/150
提交评论