小学生数学自学能力的培养.doc_第1页
小学生数学自学能力的培养.doc_第2页
小学生数学自学能力的培养.doc_第3页
小学生数学自学能力的培养.doc_第4页
小学生数学自学能力的培养.doc_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

小学生数学自学能力的培养盐城市潘黄实验学校 周娟【摘要】学生数学能力的培养是一种复杂的综合能力的培养,是在教师的指导下,通过自己的努力深入理解和领会知识的内在含义,形成相应的解答练习或解决问题技能的过程。【关键词】自学能力 问题情境 社会实践 数学是人们对客观世界定性把握和定量刻画,逐渐抽象概括并形成客观理论和解决方法的一门应用极为广泛的学科。学习数学可以帮助人们更好地探求客观世界的规律并对大量纷繁复杂的信息做出恰当的选择和判断,同时为人们交流现代信息提供了一种有效、便捷的手段。学生数学能力的培养是一种复杂的综合能力的培养,是在教师的指导下,通过自己的努力深入理解和领会知识的内在含义,形成相应的解答练习或解决问题技能的过程。下面我就浅谈几点学生数学自学能力培养的体会。一、 培养学生的自学能力,是数学教学的重要任务自学能力不是一朝一夕形成的,它是在教学实践中反复训练、逐步培养起来的,又在学习实践中反复运用不断提高的。教师首先应该教给学生自学的方法。在数学自学的过程中,如果只布置给学生自学的内容,没有相应的指导,是不可能达到预期的目标的。一般的学生在自学时,往往只是走马观花,随便翻翻书完成任务就罢了。我认为在初始阶段教师应该利用上课时间和学生一起自学,教给学生自学的方法,引导学生学会自学。教给学生“一看,二划、三批注”的方法,重点看例题的有关说明,解题分析,思考过程的旁注,书写的格式,有插图的指导学生观察插图,自学课本前特别注重设计好指导语或自学提纲,使学生不盲目看书。如苏教版数学课本第十册“约数和倍数的意义”,可以给学生布置这样的预习提纲: 在什么情况下,才可以说“一个数能被另一个数整除”? 我们说一个数能被另一个数整除时,必须具备哪几个条件? 除尽与整除的区别与联系? 两个数在什么情况下才有约数和倍数的关系? 约数和倍数是相互依存这是什么意思? 倍和倍数的区别?这样让学生带着问题去预习,学生阅读时一定会边读边思考,同时促进学生积极思维,变被动学习为主动学习。真正体现让学生“经历”、让学生“体验”、让学生“探索”的学习过程。二、培养学生的自学能力要贯彻整个教学过程中 1.指导学生课前预习 每次讲新课的前一天,让学生在数学自习课上进行预习,鼓励他们“看谁不用老师讲,能在预习时就把知识学会。”所以学生在预习时,都是埋头看书、积极思考。要求他们凡是能自己学会的自己要学会,重点地方要画上横线,自己看不懂的要标出“问号”,准备上课时提出来和同学、老师研究、议论.每逢遇到较容易的知识,通过预习把它掌握了,学生看到了自己的能力,就异常兴奋的说“已经预习会了!”一方面鼓励他们,一方面给他们提出更高的要求“你能在课上给大家讲一讲吗?如果你能给大家讲清楚了,就算你预习会了。”这时,他就带着这样的任务去进一步预习。例如在学习等腰三角形的性质的时候,一个学生讲给同学们听:问:等腰三角形ABC是轴对称图形吗?你能画出它的对称轴吗?请同学们拿出做的等腰三角形沿对称轴对折一下,对称轴与顶角有什么关系?对称轴与底边是什么关系?在学生一一回答正确的基础上,她又继续问:谁能再说一下等腰三角形的对称轴?看!她讲的多好,即检验了同学们预习的情况又把知识讲明了。然后集体总结等腰三角形的三个性质。在学习等腰三角形的性质的基础上,小组合作交流学习等边三角形的性质。还是同学领着分析,讲解等边三角形的与等腰三角形的不同性质,教师及时给予肯定,表扬,以激起同学们自主探究的好胜心,以达到培养自学的能力。 2.指导学生自学议论 “议”是学生自学一段时间后让学生自学议论,议论时如果老师出示自学提纲,可紧紧围绕提纲,内容简单时可参考课本中提出的问题,可以同桌交流也可以小组进行议论研究。鼓励大家畅所欲言,大胆提出问题,自由发表意见。一般是由功课差的提出问题,由功课好的给耐心讲解,水平差不多的则互相研究议论。也有时纷纷邀请老师去参加他们的议论。议论开始时往往分歧很大,议论一段时间之后,意见就会渐渐趋于一致。不愿参加议论的也可以自己继续看书自学。 通过自学议论,对比较容易的知识,就可以弄懂学会,只需老师再引导学生把它条理一下、巩固一下就可以了。这样获得的知识印象深刻、记忆牢固。对比较难的知识通过议论,老师就可以了解到其症结所在,使后面的讲解具有更强的针对性。3.“讲”中仍要发挥自学作用 通过自学议论,学生感到困难的知识就需要老师帮助解决。老师备课时,一般地说,对学习上的这种难点估计是正确的,也有时估计得不够准,遇到这种情况,就要根据学生的实际灵活处理。老师讲解这部分知识时,他们就会聚精会神听讲,开动脑筋思考,这时教师和学生的活动就有了共同的基础和统一的目标。所谓老师讲解,并非采用老师讲学生听的方法,仍要发挥学生的自学作用。 4.在练习巩固上给学生以展现自我的舞台 学生对新知识的理解,照本宣科,往往能有抓手。当学了新知识之后,运用其知识 自己解决问题,可就是上了个台阶,要有足够的耐心,给学生思考的时间,只要是学生能自己解决就让他们自己解决,充分给他们展现自我的空间。 三、通过定理、公式的推导来培养自学能力在课堂上教师碰到定理、公式教学时要有意识、有目的地来培养学生的自学能力。在教授定理、公式时我们可以启发引导学生通过回忆前面所学公式、类比联想、分析归纳等多个角度出发,努力找出题设与结论之间的联系,从而探索出定理的证明方法、公式的推导途径,让学生独自证明定理和推导公式。同时教师在定理、公式的应用方面应要求学生不死记硬背,要做到随时会推导,这样学生既不易忘记所学的定理、公式,又能够应用自如,提高学习效率,长久坚持,使之成为一种习惯,在潜移默化中培养学生的自学能力。四、创设学生自行探究知识的问题情境,培养学生的自学能力在课堂上学生能否积极主动地学习,关键在于教师是否引导得当,教师要遵循因势诱导的原则,适时提出问题,并且创设的问题要注意如下几个方面:(1)问题要适合不同能力水平的学生,跨度适当,不能太难,当然也不能太简单。(2)所设问题要遵循知识发生、发展过程和学生思维的一般规律,由浅入深,循序渐进。(3)所设问题要体现数学思想方法,并且应具有一定的代表性和启发性,有利于调动学生的积极性。只有做到这些才能更好地培养学生的自学能力。五、通过对知识的应用和社会实践来培养学生的自学能力我们所学的知识只有和社会有机的联系,才能使知识活起来。教师在提出问题的过程中,应该从学生所经历过、接触过的实际活动中出发,建立适当的数学模型,并将其升华为概念、运算法则或数学思想,通过具体问题的解决,感受数学知识与日常生活密切联系,进而激发学生的学习兴趣。还可以经常带领学生参加社会实践活动,让学生在实践中加强对数学的理解,了解数学的价值,促进学生不断追求新知,独立思考,增强应用数学的思想意识,并学会将实

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论