小学数学系统总复习.doc_第1页
小学数学系统总复习.doc_第2页
小学数学系统总复习.doc_第3页
小学数学系统总复习.doc_第4页
小学数学系统总复习.doc_第5页
已阅读5页,还剩9页未读 继续免费阅读

VIP免费下载

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

由旺镇中心学校:刘玉德2015年4月1日第一部分 数的认识1、数的意义1、 整数 负数和自然数统称为整数。没有最大的整数,也没有最大的自然数。最小的自然数是0,0既不是正数,也不是负数。2、 小时的意义和性质 小数的末尾添上“0”或去掉“0”,小数的大小不变。这叫做小数的基本性质。小数按数位分分为: 有限小数:小数部分的数位是有限的小数,叫有限小数。 无限小数:小数部分的数位是无限的小数,叫无限小数。无限小数分为: 无限循环小数。它又分为:纯循环小数和混循环小数。 无限不循环小数。 循环节:一个循环小数的小数部分,依次不断重复出现的数字,叫做这个小 数的的循环节。 3、 分数的意义和性质 把单位“1”平均分成若干份,表示其中的一份或几份的数叫分数。表示其中的一份是分数单位。 分数分为: 真分数:分子比分母小的分数叫真分数。 假分数:分子比分母大或分子和分母相等的分数叫假分数。假分数可以化 成带分数。 假分数化成带分数方法是:用分子除以分母,商做整数部分,余数做分子, 分母不变。 所有的真分数小于“1”。所有的分数单位都是真分数。 分数与除法的相同点是:分数是分母不能为“0”,除法是除数不能为“0”。四、百分数的意义1、百分数的意义:表示一个数是另一个数的百分之几的数叫做百分数。也叫做百分率或百分比。百分数通常用“”表示。百分数的分数单位是1。2、百分数和分数的关系:分数既可以表示一个数,也可以表示两个数的比,而百分数只表示一个数占另一个的百分比,不能用来表示具体数。因此,百分数是一种特殊的分数,绝不能有单位名称。分数可以有单位名称。五、正负数的认识1、大于0的数叫正数。 2、小于0的数叫负数。 3、正负数是表示两种具有相反意义的量,比如生活中的收入与支出,0上温度和0下温度等。 2、数位的顺序 1、计数单位:个、十、百、以及十分之一、百分之一、都是计数单位。 2、数位:各个计数单位所占的位置,叫做数位。数位是按一定的顺序排列的。 3、数的改写1、把一个数改写成用“万”或“亿”作单位的数,只要在“万位”或“亿位”的右下角打上小数点,把小数末尾的0去掉,同时添上“万”字或“亿”字。中间用“=”连接。 3、近似数1、省略尾数求近似数:把一个数省略“万位”或“亿位”后面的尾数取近似数时,只要在“万位”或“亿位”的右下角打上小数点,用“四舍五入法”保留整数,同时添上“万”字或“亿”字。中间用“”连接。2、求小数的近似数:根据要求,要把小数保留到哪一位,就把这一位后面的尾数按照“四舍五入”法省略,中间用“”连接。 保留整数,表示精确到个位;保留一位小数,表示精确到十分位;保留两位小数,表示精确到百分位;保留三位小数,表示精确到千分位;判断一个分数能不能化成有限小数的方法: 先化成最简分数,再看分母,若分母中只含有质因数2和5,这个分数就能化成有限小数,如果分母中含有2和5以外的质因数,这个分数就不能化成有限小数。 4、数的大小比较 1、数位多的比数位少的大; 2、数位相同看最高位,最高位大的这个数就大;最高位相同,看左起第二位,第二位大的这个数就大。以此类推; 3、正数和“0”大于负数; 4、小数的大小比较与整数的大小比较方法相同; 5、分数的大小比较:分母相同,看分子,分子大的这个分数就大;分子相同 看分母,分母大的这个分数就小。 6、两个负数比较大小,数值大的反而小。 5、因数和倍数 1、如果ab=c(a、b、c0),a和b就是c因数,c就是a和b的倍数。 2、一个数的因数的个数是有限的,其中最小的约数是1,最大的约数是它本身。一个数的倍数的个数是无限的,其中最小的倍数是它本身。所以一个数的最小倍数等于它的最大因数。 3、个位上是0、2、4、6、8的数,都是2的倍数 ,个位上是0或5的数,都是5的倍数, 一个数的各位上的数的和是3的倍数,这个数都就是3的倍数, 4、2的倍数叫做偶数。不是2的倍数叫做奇数。一个自然数不是奇数就是偶数。 5、一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数), 100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。 6、一个数,如果除了1和它本身还有别的因数,这样的数叫做合数,一个合数至少有3个因数。 7、1不是质数也不是合数,自然数除了1和0外,不是质数就是合数。 8、每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=35,3和5 叫做15的质因数。 9、把一个合数用质因数相乘的形式表示出来,叫做分解质因数。 例如把28分解质因数 28=227 10、几个数公有的因数,叫做这几个数的公因数。其中最大的一个,叫做这几个数的最大公因数,公因数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况: (1)1和任何自然数互质。 相邻的两个自然数互质(a-b=1或a=b+1)。 两个不同的质数互质。 当合数不是质数的倍数时,这个合数和这个质数互质。 两个合数的公因数只有1时,这两个合数互质, 11、如果两个数是互质数,它们的最大公因数就是1。 12、两个数是倍数关系,较小的数是它们的最大公因数,较大的数是它们的最小公倍数; 13、两个数是互质关系,它们的的最大公因数是1,最小公倍数是它们的乘积。 第二部分 数的运算 一、四则运算的意义1、加法的意义:把两个数合并成一个数的运算叫做加法。2、减法的意义:已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。 加法和减法互为逆运算。 3、乘法的意义:求几个相同加数的和的简便运算叫做乘法。 在乘法里,0和任何数相乘都得0。 1和任何数相乘都的任何数。一个数乘分数,就是求这个数的几分之几是多少。4、除法的意义:已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。在除法里,0不能做除数。 乘法和除法互为逆运算。 商不变的性质:两个数相除,被除数和除数同时乘上或除以相同的数(0除外), 商的大小不变(余数的大小有变化)。积不变性质:一个因数扩大若干倍,另一个因数缩小相同的倍数,其积不变。 二、四则运算之间的关系加数+加数=和 一个加数=和另一个加数 被减数减数=差 减数=被减数差 被减数=差减数一个因数一个因数 =积 一个因数=积另一个因数 被除数除数=商 除数=被除数商 被除数=商除数 在余数的除法中,被除数=商除数+余数被减数减数差=0 被除数除数商=1 三、运算定律与简便运算加法交换律两个数相加,交换加数的位置,它们的和不变a+b=b+a 加法结合律三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,(a+b)+c=a+(b+c)乘法交换律两个数相乘,交换因数的位置它们的积不变,ab=ba乘法结合律三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,(ab)c=a(bc) 乘法分配律两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,(a+b)c=ac+bc 减法的性质从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变a-b-c=a-(b+c) 四、常见的数量关系:每份数份数总数 总数每份数份数 总数份数每份数 1倍数倍数几倍数 几倍数1倍数倍数 几倍数倍数1倍数 速度时间路程 路程速度时间 路程时间速度 单价数量总价 总价单价数量 总价数量单价 工作效率工作时间工作总量 工作总量工作效率工作时间 工作总量工作时间工作效率总产量=单产量数量 单产量=总产量数量 数量=总产量单产量加数加数和 和一个加数另一个加数被减数减数差 被减数差减数 差减数被减数 因数因数积 积一个因数另一个因数 被除数除数商 被除数商除数 商除数被除数 五、典型应用题(1)平均数问题:平均数=总数份数 平均速度=总路程总时间 (2)相遇问题:路程=速度和时间 时间=路程速度和 甲车的速度=路程时间乙车的速度 六、植树问题解题规律:沿线段植树 :(1)两端都植树:棵数=总路程株距+1=段数+1 (2)一端植树,另一端不植树:棵数=总路程株距=段数 (3) 两端都不植树:棵数=总路程株距1=段数1 沿周长植树 : 棵树=总路程株距 株距=总路程棵树 总路程=株距棵树 七、年龄问题将差为一定值的两个数作为题中的一个条件,这种应用题被称为年龄问题。 八、鸡兔问题已知鸡兔的总头数和总腿数。求鸡和兔各多少只的一类应用题。通常称为鸡兔问题又称鸡兔同笼问题。 解题关键:解答鸡兔问题一般采用假设法,假设全是一种动物(如全是鸡或全是兔),然后根据出现的腿数差除以一只鸡兔腿数的差就可推算出另一种的头数。方程法:设其中一种动物只数为x ,另一种动物为“总数x”,用对应的动物只数腿数,再根据题意列出方程进行解答。抬腿法:两种动物各抬起一半的腿,既总腿数2,得出的结果的腿数与头数的相差数就是腿更多的动物数,再用头数减去已求出的动物数得出的是另一种动物的数量。 九、储蓄问题 利息本金利率时间 保险费每人的保险金额保险费率保险期限人数利率=利息本金 利息税=利息20%(一般情况,具体看提示) 税后利息=利息利息税 十、比的应用1、已知长方形的周长和长与宽的比,求长和宽。先用周长2再按比例分配。2、已知长方体的棱长总和与长、宽、高之比,求长、宽、高。先用棱长总和4再按比例分配。3、已知两个数的平均数和这两个数的比求这两个数,要先求总数,再用总数总份数=每份数,最后根据两个数的份数分别求出这两个数。4、已知两个数的比和其中一个数,要求另一个数,用已知数对应份数=每份数,然后用每份数未知数的份数=未知数 十一、分数、百分数应用题1、分数应用题:根据题中的关键词找出单位“1”,并判断单位“1”是已知数还是未知数,(1)已知单位“1”用乘法,既单位“1”几分之几=几分之几对应量,(2)求单位“1”用方程,设单位“1”为x,根据单位“1”几分之几=几分之几对应量列方程解答,或用几分之几对应量几分之几=单位“1”用除法解答。2、百分数应用题:解题方法与分数应用题相同。百分率相关公式:含盐率= 100% 出勤率= 100% 出油率= 100% 第三部分 单位及进率1、长度单位换算1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米2、面积单位换算1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米1平方分米=100平方厘米 1平方厘米=100平方毫米 3、体(容)积单位换算1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升1立方厘米=1毫升 1立方米=1000升4、重量单位换算1吨=1000 千克 1千克=1000克 5、人民币单位换算1元=10角 1角=10分 1元=100分 6、时间单位换算1世纪=100年 1年=12月 大月(31天)有:1、3、5、7、8、10、12 小月(30天)的有:4、6、9、11平年2月28天, 平年全年365天; 闰年2月29天,闰年全年366天 1日=24小时 1小时=60分 1分钟=60秒 1小时=3600地球自转一圈是一天,地球绕太阳公转一圈是一年。 第四部分 图形1、正方形 (C:周长 S:面积 a:边长 )正方形周长边长4 C=4a 正方形面积=边长边长 S=aa=a2 2、正方体 (V:体积 a:棱长 )正方体表面积=棱长棱长6 S表=aa6 =6a2 正方体体积=棱长棱长棱长 V=aaa=a3 3、长方形( C:周长 S:面积 a:边长 )长方形周长=(长+宽)2 C=2(a+b) 长方形面积=长宽 S=ab 4、长方体 (V:体积 s:面积 a:长 b: 宽 h:高)长方体表面积=(长宽+长高+宽高)2 S=2(ab+ah+bh) 2 长方体体积=长宽高 V=abh 5、三角形 (s:面积 a:底 h:高)三角形面积=底高2 s=ah2 或s=ah三角形高=面积 2底 h=s2a 三角形底=面积 2高 a=s2h三角形周长=三条边之和a、三角形内角和180度。b、三角形任意两边之和大于第三边,三角形任意两边之差小于第三边。c、三角形按角分可以分为锐角三角形、钝角三角形、直角三角形三种,按边分可以分为等边三角形、等腰三角形和不等边三角形三种,等边三角形属于等腰三角形的特殊情况。6、平行四边形 (s:面积 a:底 h:高)平行四边形面积=底高 s=ah 平行四边形周长=四条边之和7、梯形 (s:面积 a:上底 b:下底 h:高)梯形面积=(上底+下底)高2 s=(a+b) h2梯形周长=四条边之和8、圆形 (S:面积 C:周长 d=直径 r=半径)圆形周长=直径=2半径 C=d=2r 圆形面积=半径半径 s=r 9、圆柱体 (v:体积 h:高 s:底面积 r:底面半径 c:底面周长) 圆柱体侧面积=底面周长高 S侧=ch=2rh=dh 圆柱体表面积=侧面积+底面积2 S柱= S侧+ S底2 圆柱体体积=底面积高 V柱=s h或rh10、圆锥体 (v:体积 h:高 s:底面积 r:底面半径)圆锥体体积=底面积高 V锥=sh圆锥体底面积=体积高 s=vh圆锥体高=体积底面积 h=vs11、水中物体体积 水中物体体积=上升水的体积=下降水的体积=溢出的水的体积(水的形状就是容器的形状)12、两圆半径比、直径比、周长比相等,面积比等于半径比、直径比、周长比的平方。 两个正方形周长比等于边长的比,面积比等于边长的平方比。 两个正方体表面积之比等于棱长的平方比,体积比等于棱长的立方比。13、一个圆的半径扩大到原来的n倍,直径、周长也扩大到原来的n倍,而面积扩大到原来的n2倍14、在正方形中画一个最大的圆,边长作圆的直径,在长方形中画一个最大的圆,短边作直径。15、周长相等的平面图形,圆的面积最大。反之,面积相等的平面图形,圆的周长最小。16、当圆的直径与正方形的边长相等时,正方形面积最大。17、钟面上的数学(1)求针尖转动若干周转动的路程或求分针时针转动若干周扫过的面积。秒针60秒一周,分针1小时1周。时针12小时1周,一天(一昼夜)2周。(2)从某个时间,分针或时针转动的角度进而求出几分之几个圆。18、以正方形的边长为半径画一个圆,这个圆的面积是正方形面积的倍。19、在正方形圆里画一个最大的圆,再在圆里画一个最大的正方形,圆外正方形的面积是4 r2,圆内正方形的面积是2 r2,圆的面积是r2 20、把圆柱的侧面展开得到一个长方形,长等于圆柱的底面周长,宽等于圆柱的高。当底面周长等于高时,侧面展开后是一个正方形,此时正方形的边长既是圆柱的底面周长又是圆柱的高。21、圆锥的体积等于和它等底等高的圆柱体积的,圆柱的体积等于和它等底等高的圆锥体积的3倍。22、体积相等、底面积相等的圆锥体的高是圆柱高的3倍。23、体积相等、高相等的圆锥体的底面积是圆柱底面积的3倍。24、把长方体、正方体、圆柱体切成两段,表面积增加了两个底面。25、沿圆柱的直径切开,得到两个长方形,长方形的长等于底面直径,宽等于圆柱的高。沿圆锥的高线切开,得到两个等腰三角形,三角形的底等于底面直径,高等于圆锥的高。26、立体图形横截面的面积等于左右面的面积。(椎体和球体除外)27、以长方形的一条边为轴旋转一周可以得到一个圆柱体,轴边为高,另一边为底面半径。28、以直角三角形的一条直角边为轴旋转一周可以得到一个圆锥体,轴边为高,另一边为底面半径。 第五部分 数学广角1、循环赛:比赛场次队数(队数1)2注意:AB与BA所指相同时,应2,不同时不要2如:车票问题。2、淘汰赛:比赛场次队数13、通知问题:先理解下一次通知人数是前一次通知人数的几倍,再画出通知人数示意图,最后求出在某一个时段可通知到的总人数(前几次通知人数的和),注意通知人数要大于或等于要通知的人数。(注意细胞分裂问题,分裂的个数最后一次分裂的个数)4、跑道问题弯道是半圆形,一个弯道的长度r,弯道的总长度r弯道的个数经过一个弯道,相邻跑道的长度相差数=一个跑道宽度。经过两个弯道,相邻跑道的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论