物流系统决策概述课件(PPT 41页).ppt_第1页
物流系统决策概述课件(PPT 41页).ppt_第2页
物流系统决策概述课件(PPT 41页).ppt_第3页
物流系统决策概述课件(PPT 41页).ppt_第4页
物流系统决策概述课件(PPT 41页).ppt_第5页
已阅读5页,还剩35页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

3 5物流系统决策 1概述 一 什么是决策 在物流基础设施建设与经营管理过程中 物流管理者经常面对一些重大问题需要作出决定 如 某个仓储公司打算建立一个大型仓库 需要从几个方案中进行选择 在选择方案时 需要考虑多种因素 如 投资费用 运行成本 未来的需求情况 潜在的风险评估等 多个配送中心应如何进行物资调运 才能使运输费用最低 一个工厂应如何制定生产计划才能获得最大的利润 运输公司是否应该开辟新的运输线路 对以上问题作出决断的过程就是决策 一 什么是决策 决策 对某一事件的目标及其实现手段的选择 即从多个可能采取的方案中 选择一个 最优的 或 最有利的 或 最满意的 或 最合理的 方案的行动物流系统决策 对物流系统来说 决策就是在充分占有资料的基础上 根据物流系统客观环境 借助于经验 科学的理论和方法 从若干备选的方案中 选择一个合理 满意的方案的决断行为 如物流选址决策 物流经济决策 生产决策 投资决策等决策的问题和决策活动是多方面的 多领域的 多层次的 决策存在于人类活动的方方面面 决策过程随问题的规模和复杂程度的不同 可能非常复杂 二 决策的要素 决策者决策过程的主体 即决策人 决策的正确与否 受决策者所处的社会 政治 经济环境及决策者个人素质的影响 方案为实现目标而采取的一系列活动或措施 自然状态不受决策者控制的客观状况 损益值每一可行方案在每一客观情况下产生的后果 三 决策的过程 基本的决策过程大致三个步骤 1 找出问题的关键 确定决策目标2 拟订各种备选方案3 选择合理的方案 1 制定合理的选择标准 2 采用科学的选择方法 四 物流系统决策的分类 1 按决策者的地位高层决策中层决策低层决策2 按问题的性质战略性决策管理性决策日常决策3 按决策者对自然状态的了解确定型决策随机型决策 风险型决策 统计型决策 非确定型决策 五 决策问题的特征 存在着决策者希望达到的一个明确目标 存在着至少两种自然状态 各状态出现的概率可能已知 也可能未知 至少存在两个可供选择的方案 各方案在每一自然状态下的损益值可以估算出来 2非确定型决策 一 非确定型决策概述 非确定型决策 指自然状态出现的概率是未知的决策问题一般情况下 越是高层 越是关键的决策 往往是非确定型决策 例1 根据资料 一条集装箱船舶每个航次从天津到厦门港所需的舱位数量可能是下面数量中的某一个 100 150 200 250 300 具体概率分布不知道 如果一个舱位空着 则在开船前24小时起以80美圆的低价运输 每个舱位的标准定价是120美元 运输成本是100美元 假定所准备的空舱量为所需要量中的某一个 方案1 准备的空舱量为100 方案2 准备的空舱量为150 方案3 准备的空舱量为200 方案4 准备的空舱量为250 方案5 准备的空舱量为300 决策问题 如何准备合适的空舱量 因为各事件状态出现的概率未知 因为属于非确定型决策问题 二 损益矩阵 设 需求的舱位数为ai 准备的舱位数为bj 损益值为cij 根据计算可以建立下面的损益矩阵 需求量bj 准备的空舱量ai 本例 损益值 收入 成本 ai 标准定价 剩余舱位 折价 bj 成本单价如 c11 a1 120 b1 100 2000 美元 c41 a1 120 b4 a1 80 b4 100 100 120 250 100 80 250 100 1000 美元 三 非确定型决策问题 从损益矩阵可以看出 不同方案的赢利结果不同 可能赢利多的方案有可能出现亏损 由于不知道各状态出现的概率 无法直接得出哪一个方案好或差的结论 不同的决策人员有不同的决策结果 因此对非确定型问题决策时 应该首先确定决策准则 需求量bj 准备的空舱量ai 四 平均准则 Laplace准则 这种决策的出发点是 既然不能肯定哪种状态比另一种状态更可能出现 就认为各种状态出现的概率相等 决策步骤 编制决策损益表 损益矩阵 按相等概率计算每一个方案的平均收益值 选择平均收益值最大的方案作为最佳方案 算例 以例1为例计算 决策结果 第3方案为最佳方案 需求量bj 准备的空舱量ai 五 悲观准则 max min准则 这种决策的思路是 从最不利的结果出发 以在最不利的结果中取得最有利的结果的方案作为最优方案 决策步骤 编制决策损益表 损益矩阵 计算找出各个方案的最小收益值 选取最小收益值最大的方案作为最佳方案 算例 以例1为例计算 决策结果 第1方案为最佳方案 需求量bj 准备的空舱量ai 事实上 这种方法是选取最不利情况下的最有利方案 过于保守 六 乐观准则 max max准则 这种决策的思路是 从最有利的结果出发 以在最有利的结果中取得最有利的结果的方案作为最优方案 与悲观准则刚好相反 决策步骤 编制决策损益表 损益矩阵 计算找出各个方案的最大收益值 选取最大收益值最大的方案作为最佳方案 算例 以例1为例计算 决策结果 第6方案为最佳方案 需求量bj 准备的空舱量ai 事实上 这种方法进行大中取大 过分乐观 容易冒进 七 折衷准则 Hurwicz准则 这种决策的思路是 对悲观准则和乐观准则进行折衷 决策时 先根据个性 经验选定乐观系数 然后按乐观和悲观两个方面计算折衷值 决策步骤 编制决策损益表 损益矩阵 计算各个方案的折衷收益值 选择取最大折衷收益值的方案作为最佳方案 折衷值的计算公式 折衷收益值 最大收益值 1 最小收益值 的取值在0 1之间 越大 最大收益值对结果的影响越大 当 0时 即为悲观准则法 当 1时 即为乐观准则法 七 折衷准则 Hurwicz准则 算例 以例1为例计算 取 0 3 计算结果见下表 决策结果 第1方案为最佳方案 需求量bj 准备的空舱量ai 八 后悔值准则 Savage准则 思路 希望找到一个方案 当此方案执行后 无论自然状态如何变化 决策者产生的后悔感觉最小 后悔感觉的大小用后悔值表示 在每一自然状态下 每一方案的收益值与该状态的最大收益值之差 叫做后悔值 决策步骤 找出各个自然状态下的最大收益值 定其为该状态下的理想目标 将该状态下的其他收益值与理想目标之差 作为该方案的后悔值 将他们排列成一个矩阵 称为后悔矩阵 找出每一方案的最大后悔值 选取最大后悔值最小的方案作为最佳方案 算例 以例1为例计算 需求量bj 准备的空舱量ai 需求量bj 准备的空舱量ai 决策结果 第3方案为最优方案 3风险型决策 风险型决策 指自然状态出现的概率是已知的决策问题 不同方案在不同自然状态下的损益值可以计算出来 但在未来的时间内 究竟会出现哪种状态是不能确定的 只知道各种自然状态出现的概率 因此 无论采取哪种方案 都具有一定的风险 期望值准则 采用期望值的大小作为判别标准首先利用自然状态发生的概率 计算出每个方案的期望损益值 然后比较损益值的大小 具有最大期望收益值或最小期望损失值的方案就是期望值准则下的最优方案 风险型决策是决策分析中研究得最多的一种决策 风险型决策包括 损益矩阵法和决策树法 一 相关概念 一 损益矩阵法决策 1 方法描述已知 风险型决策的决策空间为 可选择的方案 A a1 a2 am 风险型决策的状态空间为 可能存在的自然状态 S S1 S2 Sn 各自然状态的概率集合为 P P1 P2 Pn 各方案在各种自然状态下的损益值为V Vij i 1 2 m j 1 2 n要求 根据损益期望值选择最优方案 一 损益矩阵法决策 各方案的损益期望值的计算公式 从Ej中选择收益期望值最大的方案作为最优方案 即 或者 从Ej中选择损失期望值最小的方案作为最优方案 即 例题1某化工厂销售一种粘接剂 该产品存储时间较短 为了提高使用质量 决定只配制每天的销售量 该粘接剂配制成本为每公斤2元 售价为每公斤5元 问每天配制多少使供需情况最理想 该厂过去200天的销售情况统计如下表所示 解 每天的销售数量情况 即状态空间 为 S 5 6 7 8 9 工厂每天的配制方案 即决策空间 为 A 5 6 7 8 9 各种自然状态出现的概率集合为 P 20 200 40 200 80 200 30 200 30 200 0 1 0 2 0 4 0 15 0 15 一 损益矩阵法决策 计算各方案的损益期望值E 本例为收益期望值 配制5Kg E 15 0 1 15 0 2 15 0 4 15 0 15 15 0 15 15配制6Kg E 13 0 1 18 0 2 18 0 4 18 0 15 18 0 15 17 5配制7Kg E 11 0 1 16 0 2 21 0 4 21 0 15 21 0 15 19配制8Kg E 9 0 1 14 0 2 19 0 4 24 0 15 24 0 15 18 5配制9Kg E 7 0 1 12 0 2 17 0 4 22 0 15 27 0 15 17 5 自然状态 方案 概率 损益矩阵表 损益值 二 决策树法决策 1 相关概念决策树法 是以损益值为准则的图解决策法 由于这种决策图类似树枝 因此称为决策树法 决策树的结构 决策树由节点和分枝组成 节点有三种 1 决策节点 用符号表示 表示此时的行为是决策者在自己能够控制的情况下进行分析和选择 从决策节点引出的分枝叫方案分枝 分枝数反映可能的方案数目 2 方案 状态 节点 用符号表示 表示此时的行为是决策者在自己无法控制的一种状态 从方案节点引出的分枝叫状态分枝 每一枝代表一种自然状态 分枝数反映可能的自然状态数目 每条分枝上标明自然状态及其可能出现的概率 3 结果节点 用符号表示 它是状态分枝的最末端 节点后面的数字是方案在相应结局下的损益值 二 决策树法决策 决策树结构图例 决策节点 方案节点 结果节点 方案分枝 状态分枝 概率 损益值 损益值 损益值 损益值 2 决策树的画法与求解 1 从左到右 从决策节点开始 依次列出各方案 2 列出方案节点下可能的自然状态 概率 费用 结果节点 3 从右到左求解决策树 用概率枝上的概率乘以结果节点上的损益值 然后将每一方案求和 方案的期望值 将方案的期望值填入方案节点旁边 决策树便可以向左推一级 凡遇到决策节点 保留具有最大期望值的树枝 去除相对小的树枝 依次类推 利用这种反推决策树的方法 从右到左 求出最优方案 二 决策树法决策 二 决策树法决策 3 决策树法的决策步骤 1 画决策树 2 计算各方案的期望值 3 选择方案 例题2某仪器厂生产的仪器中需要装配一种电子元器件 由一家协作厂供应 每批次供应800件 在长期生产中已统计出每批元件装配在仪器上再行老化出现不同次品率的概率如下表8 4所示 表8 4不同次品率出现的概率 按原工艺生产 发现次品后 每更换一件的费用为1 5元 现拟改进生产工艺 即每批元件进厂后 先进行老化处理 并加以筛选 然后再装配 这样出现的次品率如表8 5所示 更换一件次品同样要支付1 5元 此外这种新工艺要为每批元件多支付40元的处理费用 决策问题 是否应该采用新工艺 表8 5新工艺中不同次品率出现的概率 解 1 决策目标 工艺要不要进行改革 该决策只有一个目标 2 绘制决策树 1 该决策只有一个决策点 即点1 2 有改与不改两个方案 故从决策节点引出两个方案分枝 并在右端画出两个状态节点 即点2和点3 1 2 3 0 4 0 3 0 15 0 10 0 05 0 70 0 20 0 10 改革方案决策树 3 根据不同工艺出现不同比例次品的概率 分别从节点2和节点3画出相应的状态分枝 并标出相应的概率 1 2 3 0 4 0 3 0 15 0 10 0 05 0 70 0 20 0 10 24 60 120 180 240 24 96 110 3 计算结果节点的损益值 并标注在概率枝的右端 计算方法 费用 批量 次品率 单件费用 4 计算状态节点的期望费用值EMV原工艺的期望费用值 75 6 50 4 新工艺的期望费用值 5 计算各方案的期望费用原方案的期望费用与代表该方案的状态节点的期望费用EMV1相等 即 75 6元 新方案的期望费用为 该方案状态节点的期望费用EMV2 每批元件的处理费用40元 即 50 4 40 90 4元6 决策 通过比较两个方案的费用 可以看出 采用原方案比改革工艺节省的期望费用为90 4 75 6 14 8元 决策结果 采用原来的方案 二 决策树法决策 4多目标决策 一 多目标决策的概念 在社会 经济 科学研究和工程建设活动中经常遇到要对多个目标作出决策 例如 新建一个物流系统 既要考虑系统的先进性 又要考虑投资少 两个目标 又如 选择一个新的厂址 要考虑以下因素 运输费用 原材料供应 投资 能源 环保等因素 一般来说 对于有多个决策目标的决策问题 要同时使多个目标达到最优值是不可能的 在数学上的求解也非常困难 二 物流系统多目标决策的数学模型 最优解X 若对于可行方案集合D中的任何X 有F X F X 则称X 为最优解 非劣解X0 若对于可行方案集合D 不存在属于D的任何X 使F X F X0 则称X0为非劣解 设物流系统所有的可行方案的集合为D 每个方案都有m个目标函数fi X 1 i m 每个方案的各目标函数统一表示为F X 则多目标决策问题可以表示为 三 多目标决策的简化方法 对多目标问题的求解一般是将其简化为单目标或双目标决策 1 主要目标法找出主要目标 并适当兼顾其他目标的要求 设有m个目标f1 X f2 X fm X 要实现 可以确定其中一个目标为主要目标 保证此目标的实现 而对于其他的目标只在一定的程度上满足即可 例如 确定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论