



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
13.3 等腰三角形(3)教学内容等腰三角形(3)内容解析掌握等边三角形教学重点探索等边三角形的性质与判定教学目标1探索等边三角形的性质和判定2能运用等边三角形的性质和判定进行计算和证明目标分析结合等腰三角形性质理解等边三角形的性质教学过程设计集体备课个性设计一、问题导入:问题满足什么条件的三角形是等边三角形?三条边都相等的三角形是等边三角形二、提出问题:请分别画出一个等腰三角形和等边三角形,结合你画的图形说出它们有什么区别和联系?联系:等边三角形是特殊的等腰三角形;区别:等边三角形有三条相等的边,而等腰三角形只有两条.问题等腰三角形有哪些特殊的性质呢? 从边的角度:两腰相等;从角的角度:等边对等角;从对称性的角度:轴对称图形、三线合一思考将等腰三角形的性质用于等边三角形,你能得到什么结论? 结合等腰三角形的性质,你能填出等边三角形对应的结论吗? 图形边角轴对称图形等腰三角形两边相等(定义)两底角相等(等边对等角)是(三线合一)一条对称轴等边三角形三边相等(定义)对“等边三角形的三个内角都相等,并且每一个角都等于60”这一结论进行证明.已知:ABC 是等边三角形 求证:A =B =C =60证明:ABC 是等边三角形, BC =AC,BC =AB A =B,A =C A =B =C A +B +C =180, A =60 A =B =C =60等边三角形的性质:三、大组汇报等边三角形的三个内角都相等,并且每一个角都等于60.符号语言:ABC 是等边三角形,A =B =C =60思考利用所学知识判断,等边三角形是轴对称图形吗?若是轴对称图形,请画出它的对称轴.问题等边三角形除了用定义(即用边)来判定以外,能否利用角来判定呢?思考1一个三角形的三个内角满足什么条件是等边三角形?思考2一个等腰三角形满足什么条件是等边三角形?三个角都相等的三角形或者一个角为60的等腰三角形请你将得到的这两个命题进行证明.等边三角形的判定定理1:三个角都相等的三角形是等边三角形 符号语言:在ABC 中, A=B =C , ABC 是等边三角形等边三角形的判定定理2:有一个角为60的等腰三角形是等边三角形 符号语言:在ABC 中,BC =AC,A =60,ABC 是等边三角形判定等边三角形的方法:从边的角度:等边三角形的定义;从角的角度:等边三角形的两条判定定理 等边三角形的判定定理1:三个角都相等的三角形是等边三角形等边三角形的判定定理2:有一个角为60的等腰三角形 例1如图,ABC 是等边三角形,DEBC, 分别交AB,AC 于点D,E求证:ADE 是等边三角形. 四、变式练习:教科书80页练习1、2五、课堂小结:(1)本节课学习了等边三角形的性质和判定;(2)等边三角形与等腰三角形相比有哪些特殊的性质? 共有几种判定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 规划公寓建筑组团方案设计
- 2025年职业能力考试题及答案
- 供暖散热器营销推广方案
- 2025年潍坊铲车考试试题及答案
- 2025年农业推广学试题及答案
- 第3课 阈值控制便生活说课稿-2025-2026学年小学信息科技泰山版2024六年级下册-泰山版2024
- DB65T 4389-2021 雷电灾害风险区划技术规范
- 2025年新能源汽车电池管理系统在电动垃圾车领域的应用报告
- DB65T 4479-2021 鲜食桃果品质量分级
- DB65T 4466-2021 特种设备安全风险分级管控工作导则
- 村消防安全管理工作制度
- 新版《企业安全生产费用提取和使用管理办法》专题培训课件
- 护士注射法考试题及答案
- T-CALC 007-2025 重症监护病房成人患者人文关怀规范
- 土方内倒合同(2025年版)
- 初中数学教师职称评审中的教学反思
- 储能站施工组织设计施工技术方案(技术标)
- 《运算放大器介绍》课件
- ktv消防安全培训制度
- GB/T 44923-2024成年人三维头部模型
- 基于深度学习的车辆重识别研究进展
评论
0/150
提交评论