勾股定理的教学设计.doc_第1页
勾股定理的教学设计.doc_第2页
勾股定理的教学设计.doc_第3页
勾股定理的教学设计.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

勾股定理的教学设计教学目标:1. 掌握勾股定理的几种证明方法,能够熟练地运用勾股定理由直角三角形的任意两边求得第三边 2. 通过探究勾股定理的发现与证明,渗透数形结合的思想方法,增强逻辑思维能力,操作探究能力和培养学生的探索精神和合作交流的能力. 3.通过对勾股定理的探索,培养学生对数学问题孜孜以求的探究精神和科学态度.通过了解我国古代在勾股定理研究方面的成就,激发热爱祖国,热爱祖国悠久文化的思想感情 教学重点 从具体的图形得出直角三角形的边与边的关系,探讨勾股定理的证明 与应用. 教学方法 启发、合作交流和直观演示.教学过程:一 .引入新课问题1: 随着社会的进步,人类的发展,人们渴望对地球以外的世界了解更多.许多科学家正在试探着寻找“外星人”,人们为了取得与外星人的联系,想了很多方法.我国伟大数学家华罗庚教授也曾提出:若要沟通两个不同星球的信息交往,最好利用太空飞船带上一副数形关系图,并发射到太空中去.你知道这副图是什么吗?这副图蕴含了怎样的道理?二、动手操作 .出示问题1中的数形关系图(如图1):这副图是由一个直角三角形和以直角三角形三边为边的三个正方形构成的.直角三角形三边有怎样的关系,我们不妨从直角边分别为3、4的特殊直角三角形开始研究.请同学们在已经拿到的一张画有图1的纸上,量一量斜边的长度,猜一猜三条边长的关系. (目的:设计这个直角三角形的边长分别为:3,4,5.学生易发现三边关系为.通过学生的动手实践让学生初步体验到:直角三角形两直角边的平方和等于斜边的平方.这样做也能培养学生的操作能力,使学生体会到“数学好玩”.)紧接着再问学生:我们是通过测量的方式发现了直角三角形两直角边的平方和等于斜边的平方或者说两小正方形的面积和大正方形的面积.这种做法往往并不可靠,我们能否证出两直角边为3、4的直角三角形斜边是5.三、自主探索。为了解决好这个问题我们不妨把图19.2置于方格图中,计算大正方形的面积等于25.于是让学生计算大正方形的面积,但大正方形R的面积不易求出,可引导学生利用网格对大正方形尝试割或补两种方法解决.方法一:将图2补成图3,则要求正方形的面积为:.因此直角边分别为3、4的直角三角形斜边是5即.方法二:将图2补成图4,则要求正方形的面积为:.因此直角边分别为3、4直角三角形斜边是5即.(此时老师提出问题:对于这个直角三角形满足两直角边的平方和等于斜边的平方,那么对于任何一个直角三角形都有这种关系吗?通过以上探索,相信有学生能用文字语言概括猜想出一般的结论:直角三角形两直角边的平方和等于斜边的平方.符号表示为(a、b是直角边,c是斜边.).教师要鼓励这位同学讲的好,敢于猜想是一种难能可贵的数学素养,这位同学用精确的语言叙述了直角三角形三边的关系,那么这一结论是否正确,怎样论证?老师用多媒体将图2的方格线隐去得图5,设直角边为a,b及斜边c,试证明.通过与学生的合作交流,只要证明出斜边上的正方形的面积,等于两直角边上的正方形的面积和即可.有前面的证明过程,学生可以想到通过割补利用面积法进行证明.这个地方要留够充足的时间让学生讨论交流,证好的同学请上台来解释他是如何证明的.方案一:,用三个与一样的直角三角形将图5中斜边上的正方形补成图6,则.化简整理得到 .方案二:用三个与一样的直角三角形将图5中斜边上的正方形割成图7,则=.化简整理得到 . 四、应用新知、解决问题例1 如图19.2.4,将长为5.41米的梯子AC斜靠在墙上,BC长为2.16米,求梯子上端A到墙的底端B的距离AB.(精确到0.01米)解在RtABC中,ABC=90,BC=2.16,CA=5.41,根据勾股定理得4.96(米) 答:梯子上端A到墙的底端B的距离约为4.96米. 例2 (趣味剪纸)如图两个边长分别为4个单位和3个单位的正方形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论