




已阅读5页,还剩16页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 1 3四种命题间的相互关系 回顾 逆命题 否命题 逆否命题 交换原命题的条件和结论 所得的命题是 同时否定原命题的条件和结论 所得的命题是 交换原命题的条件和结论 并且同时否定 所得的命题是 原命题 逆命题 否命题 逆否命题 四种命题形式 原命题 逆命题 否命题 逆否命题 若p 则q若q 则p若 p 则 q若 q 则 p 观察与思考 你能说出其中任意两个命题之间的关系吗 课堂小结 原命题若p则q 逆命题若q则p 否命题若 p则 q 逆否命题若 q则 p 互为逆否同真同假 互为逆否同真同假 2 原命题 若a 0 则ab 0 逆命题 若ab 0 则a 0 否命题 若a 0 则ab 0 逆否命题 若ab 0 则a 0 真 假 假 真 真 四种命题的真假 看下面的例子 1 原命题 若x 2或x 3 则x2 5x 6 0 逆命题 若x2 5x 6 0 则x 2或x 3 否命题 若x 2且x 3 则x2 5x 6 0 逆否命题 若x2 5x 6 0 则x 2且x 3 真 真 真 3 原命题 若x a b 则x ua ub help 假 假 假 假 四种命题的真假 有且只有下面四种情况 想一想 2 若其逆命题为真 则其否命题一定为真 但其原命题 逆否命题不一定为真 由以上三例及总结我们能发现什么 即原命题与逆否命题同真假 原命题的逆命题与否命题同真假 1 原命题为真 则其逆否命题一定为真 但其逆命题 否命题不一定为真 两个命题为互逆命题或互否命题 它们的真假性没有关系 几条结论 1 判断下列说法是否正确 1 一个命题的逆命题为真 它的逆否命题不一定为真 对 2 一个命题的否命题为真 它的逆命题一定为真 对 2 四种命题真假的个数可能为 个 答 0 2 4 如 原命题 若a b a 则a b 逆命题 若a b 则a b a 否命题 若a b a 则a b 逆否命题 若a b 则a b a 假 假 假 假 3 一个命题的原命题为假 它的逆命题一定为假 错 4 一个命题的逆否命题为假 它的否命题为假 错 练一练 总结 反证法 要证明某一结论a是正确的 但不直接证明 而是先去证明a的反面 非a 是错误的 从而断定a是正确的 即反证法就是通过否定命题的结论而导出矛盾来达到肯定命题的结论 完成命题的论证的一种数学证明方法 反证法的步骤 假设命题的结论不成立 即假设结论的反面成立 从这个假设出发 通过推理论证 得出矛盾 由矛盾判定假设不正确 从而肯定命题的结论正确 例证明 若p2 q2 2 则p q 2 将 若p2 q2 2 则p q 2 看成原命题 由于原命题和它的逆否命题具有相同的真假性 要证原命题为真命题 可以证明它的逆否命题为真命题 即证明为真命题 假设原命题结论的反面成立 看能否推出原命题条件的反面成立 尝试成功 得证 例证明 若p2 q2 2 则p q 2 变式练习 已知 求证 这说明 原命题的逆否命题为真命题 从而原命题为真命题 证明 假设p q 2 那么q 2 p 根据幂函数的单调性 得 即 所以 因此 可能出现矛盾的四种情况 与题设矛盾 与反设矛盾 与公理 定理矛盾 在证明过程中 推出自相矛盾的结论 证明 因为 所以 例用反证法证明 如果a b 0 那么 练圆的两条不是直径的相交弦不能互相平分 已知 如图 在 o中 弦ab cd交于p 且ab cd不是直径 求证 弦ab cd不被p平分 证明 假设弦ab cd被p平分 因为p点一定不是圆心o 连接op 根据垂径定理的推论 有 op ab op cd 即过点p有两条直线与op都垂直 这与垂线性质矛盾 所以弦ab cd不被p平分 证 假设a不能被2整除 则a必为奇数 故可令a 2m 1 m为整数 由此得a2 2m 1 2 4m2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高中一轮压缩语句课件
- 高三后期励志课件模板
- 高一青铜器鉴赏课件
- 高一程序框图课件
- 离婚后子女户口迁移与父母共同监护权协议书
- 高效空运服务协议:空运提单货物运输保险及赔付标准
- 企业办公楼装饰装修工程与物业入驻管理协议
- 员工劳动合同续签及福利待遇调整协议
- 离婚协议书范本:离婚后子女教育费用分担协议
- 幼儿园园长任期师资队伍建设与人才引进合同
- 关于车的英语原版书
- 马克思主义基本原理概论全部-课件
- 【上海旺旺食品集团公司固定资产管理问题及优化研究案例报告(数据图表论文)7400字】
- 沙里宁的大赫尔辛基规划
- 教学一体机施工方案
- 早期教育概论(高职学前教育专业)全套教学课件
- 防雷安全应急预案
- 小学三年级上册《健康成长》全册教案教学设计
- 有机化学-药用化学基础中职PPT完整全套教学课件
- 道路勘测课程设计计算说明书1
- 国土空间规划概述课件
评论
0/150
提交评论