全等三角形教学设计(第三课时).doc_第1页
全等三角形教学设计(第三课时).doc_第2页
全等三角形教学设计(第三课时).doc_第3页
全等三角形教学设计(第三课时).doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

章节(课题)名称全等三角形学时3总课时10教学目标知识技能三角形全等的“边角边”的条件过程方法了解三角形的稳定性情感态度与价值观经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程学生特征分析项目内容解决措施教学重点三角形全等的条件边边边(SAS)通过模拟图形演示教学难点寻求三角形全等的条件通过模拟图形演示教学过程设计教学内容及问题情境学生活动设计意图教学札记1121 三角形全等的条件(二)一、创设情境,复习提问1怎样的两个三角形是全等三角形?2全等三角形的性质?3指出图中各对全等三角形的对应边和对应角,并说明通过怎样的变换能使它们完全重合:图(1)中:ABDACE,AB与AC是对应边;图(2)中:ABCAED,AD与AC是对应边三角形全等的判定的内容是什么?二、导入新课1三角形全等的判定(二)(1)全等三角形具有“对应边相等、对应角相等”的性质那么,怎样才能判定两个三角形全等呢?也就是说,具备什么条件的两个三角形能全等?是否需要已知“三条边相等和三个角对应相等”?现在我们用图形变换的方法研究下面的问题:如图2,AC、BD相交于O,AO、BO、CO、DO的长度如图所标,ABO和CDO是否能完全重合呢?不难看出,这两个三角形有三对元素是相等的:AOCO,AOB COD,BODO如果把OAB绕着O点顺时针方向旋转,因为OAOC,所以可以使OA与OC重合;又因为AOB COD, OBOD,所以点B与点D重合这样ABO与CDO就完全重合(此外,还可以图1(1)中的ACE绕着点A逆时针方向旋转CAB的度数,也将与ABD重合图1( 2)中的ABC绕着点A旋转,使AB与AE重合,再把ADE沿着AE(AB)翻折180两个三角形也可重合)由此,我们得到启发:判定两个三角形全等,不需要三条边对应相等和三个角对应相等而且,从上面的例子可以引起我们猜想:如果两个三角形有两边和它们的夹角对应相等,那么这两个三角形全等2上述猜想是否正确呢?不妨按上述条件画图并作如下的实验:(1)读句画图:画DAE45,在AD、AE上分别取 B、C,使 AB3.1cm, AC2.8cm连结BC,得ABC按上述画法再画一个ABC(2)把ABC剪下来放到ABC上,观察ABC与ABC是否能够完全重合?3边角边公理有两边和它们的夹角对应相等的两个三角形全等(简称“边角边”或“SAS”)三、例题与练习1填空:(1)如图3,已知ADBC,ADCB,要用边角边公理证明ABCCDA,需要三个条件,这三个条件中,已具有两个条件,一是ADCB(已知),二是_;还需要一个条件_(这个条件可以证得吗?)(2)如图4,已知ABAC,ADAE,12,要用边角边公理证明ABDACE,需要满足的三个条件中,已具有两个条件:_(这个条件可以证得吗?)2、例1 已知: ADBC,AD CB(图3)求证:ADCCBA问题:如果把图3中的ADC沿着CA方向平移到ADF的位置(如图5),那么要证明ADF CEB,除了ADBC、ADCB的条件外,还需要一个什么条件(AF CE或AE CF)?怎样证明呢?例2 已知:ABAC、ADAE、12(图4)求证:ABDACE四、小 结:1根据边角边公理判定两个三角形全等,要找出两边及夹角对应相等的三个条件2找使结论成立所需条件,要充分利用已知条件(包括给出图形中的隐含条件,如公共边、公共角等),并要善于运用学过的定义、公理、定理通过复习提问,加强学生的理解能力和认知能力。提醒学生要做到课前预习,才能达到事半功倍。培养学生善于观察、善于总结的能力,勤动手勤动脑习惯。要判断三角形全等首先要判断判断三角形全等应具备的条件。让学生了解两个全等三角形的变换过程通过讨论三角形边角关系,让学生明确边边边能证明三角形全等的数量关系。让学生做一些针对性较强的练习,提高认知能力通过针对性加强的练习题,加强学生的认知能力。培养学生善于参与教学过程,分享探讨成果,培养学生分组讨论、探索、归纳的意识。最后以组为单位出示结果并能做出补充交流。通过具体的实例,加强学生的理解。通过图形的平移翻转旋转让学生理解两个全等三角形的位置关系。让学生做一些针对性较强的练习,提高认知通过实例的练习,让学生理解并掌握如何证明两个三角形全等的方法与证明过程个性化教学为学有余力学生所做的调整根据课堂教学情况及学生掌握的情况及课堂效果,可适当加一道中上等难度的题型。为需要帮助学生所做的调整根据课堂教学情况及学生掌握

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论