免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
全等三角形证明经典10题(含答案)1 如图,已知: AD是BC上的中线 ,且DF=DE求证:BECF2.如图,在ABC中,D是边BC上一点,AD平分BAC,在AB上截取AE=AC,连结DE,已知DE=2cm,BD=3cm,求线段BC的长。3.已知:AB=4,AC=2,D是BC中点,AD是整数,求ADADBC- 5 -解:延长AD到E,使AD=DED是BC中点BD=DC 在ACD和BDE中AD=DEBDE=ADCBD=DCACDBDEAC=BE=2在ABE中 AB-BEAEAB+BEAB=4即4-22AD4+21AD3AD=24.已知:BC=DE,B=E,C=D,F是CD中点,求证:1=2ABCDEF211. 证明:连接BF和EF BC=ED,CF=DF,BCF=EDF 三角形BCF全等于三角形EDF(边角边) BF=EF,CBF=DEF连接BE在三角形BEF中,BF=EF EBF=BEF。 ABC=AED。 ABE=AEB。 AB=AE。在三角形ABF和三角形AEF中AB=AE,BF=EF,ABF=ABE+EBF=AEB+BEF=AEF 三角形ABF和三角形AEF全等。 BAF=EAF (1=2)。5.已知:1=2,CD=DE,EF/AB,求证:EF=AC BACDF21E证明:过C作CGEF交AD的延长线于点GCGEF,可得,EFDCGDDEDCFDEGDC(对顶角)EFDCGDEFCGCGDEFD又,EFAB,EFD11=2CGD2AGC为等腰三角形,ACCG又 EFCGEFAC6.已知:AD平分BAC,AC=AB+BD,求证:B=2C证明:延长AB取点E,使AEAC,连接DEAD平分BACEADCADAEAC,ADADAEDACD (SAS)ECACAB+BDAEAB+BDAEAB+BEBDBEBDEEABCE+BDEABC2EABC2C7.如图所示,ABC中,ACB=90,AC=BC,AE是BC边上的中线,过C作CFAE, 垂足为F,过B作BDBC交CF的延长线于D.求证:(1)AE=CD;(2)若AC=12cm,求BD的长.8.如图(1), 已知ABC中, BAC=900, AB=AC, AE是过A的一条直线, 且B、C在A、E的异侧, BDAE于D, CEAE于E试说明: BD=DE+CE9已知ABC=3C,1=2,BEAE,求证:AC-AB=2BE证明:在AC上取一点D,使得角DBC=角CABC=3CABD=ABC-DBC=3C-C=2C;ADB=C+DBC=2C;AB=ADAC AB =AC-AD=CD=BD在等腰三角形ABD中,AE是角BAD的角平分线,AE垂直BDBEAE点E一定在直线BD上,在等腰三角形ABD中,AB=AD,AE垂直BD点E也是BD的中点BD=2BEBD=CD=AC-ABAC-AB=2BE22(6分)如图,E、F分别为线段AC上的两个动点,且DEAC于E,BFAC于F,若AB=CD,AF=CE,BD交AC于点M(1)求证:MB=MD,ME=MF(2)当E、F两点移动到如图的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由 (1)连接BE,DFDEAC于E,BFAC于F,DEC=BFA=90,DEBF,在RtDEC和RtBFA中,AF=CE,AB=CD,RtDECRtBFA(HL),DE=BF四边形BEDF是平行四边形MB=MD,ME=MF;(2)连接BE,DFDEAC于E,BFAC于F,DEC=BFA=90
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 签四方协议劳动合同
- 砖厂安全生产协议书
- 砼劳务分包合同范本
- 矿山配件合同协议书
- 整体护理质量评价标准
- 中医特色护理健康宣教
- 结肠癌常见症状及护理注意事项培训
- 痴呆症典型症状详解及护理指南
- 2026年高端私人影院建设公司项目现场管理制度
- 2025年社会化服务项目隐患排查表(有依有据)
- 华为ICT大赛2024-2025中国区实践赛(昇腾Al赛道)省决赛考试题库及答案(供参考)
- 高三艺考培训班开学
- 开原市污水处理厂提标改造可研报告
- 核和辐射事故医学应急演练
- GB/T 12979-2024近景摄影测量规范
- 2024新《公司法》亮点全面解读课件
- JB-T 14320-2022 氧气用止回阀
- 深基坑拉森钢板桩支护方案完整版
- 小学二年级乘除法口算题每页100道
- 第三单元一《伐檀》公开课一等奖创新教案-【中职专用】(中职语文高教版2023-2024-基础模块上册)
- 山西2023年晋商银行校园招聘柜员岗考试参考题库含答案详解
评论
0/150
提交评论