




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2014高考数学(文)一轮:一课双测A+B精练(四十七)圆 的 方 程1圆(x2)2y25关于原点P(0,0)对称的圆的方程为()A(x2)2y25Bx2(y2)25C(x2)2(y2)25 Dx2(y2)252(2012辽宁高考)将圆x2y22x4y10平分的直线是()Axy10 Bxy30Cxy10 Dxy303(2012青岛二中期末)若圆C的半径为1,圆心在第一象限,且与直线4x3y0和x轴都相切,则该圆的标准方程是()A(x3)221 B(x2)2(y1)21C(x1)2(y3)21 D.2(y1)214(2012海淀检测)点P(4,2)与圆x2y24上任一点连线的中点的轨迹方程是()A(x2)2(y1)21 B(x2)2(y1)24C(x4)2(y2)24 D(x2)2(y1)215(2013杭州模拟)若圆x2y22x6y5a0,关于直线yx2b成轴对称图形,则ab的取值范围是()A(,4) B(,0)C(4,) D(4,)6已知点M是直线3x4y20上的动点,点N为圆(x1)2(y1)21上的动点,则|MN|的最小值是()A. B1C. D.7如果三角形三个顶点分别是O(0,0),A(0,15),B(8,0),则它的内切圆方程为_8(2013河南三市调研)已知圆C的圆心与抛物线y24x的焦点关于直线yx对称,直线4x3y20与圆C相交于A,B两点,且|AB|6,则圆C的方程为_9(2012南京模拟)已知x,y满足x2y21,则的最小值为_10过点C(3,4)且与x轴,y轴都相切的两个圆的半径分别为r1,r2,求r1r2.11已知以点P为圆心的圆经过点A(1,0)和B(3,4),线段AB的垂直平分线交圆P于点C和D,且|CD|4.(1)求直线CD的方程;(2)求圆P的方程12(2012吉林摸底)已知关于x,y的方程C:x2y22x4ym0.(1)当m为何值时,方程C表示圆;(2)在(1)的条件下,若圆C与直线l:x2y40相交于M、N两点,且|MN|,求m的值1(2012常州模拟)以双曲线1的右焦点为圆心且与双曲线的渐近线相切的圆的方程是()A(x)2y21 B(x3)2y23C(x)2y23 D(x3)2y292由直线yx2上的点P向圆C:(x4)2(y2)21引切线PT(T为切点),当|PT|最小时,点P的坐标是()A(1,1) B(0,2)C(2,0) D(1,3)3已知圆M过两点C(1,1),D(1,1),且圆心M在xy20上(1)求圆M的方程;(2)设P是直线3x4y80上的动点,PA、PB是圆M的两条切线,A,B为切点,求四边形PAMB面积的最小值 答 题 栏 A级1._ 2._ 3._ 4._ 5._ 6._ B级1._ 2._ 7. _ 8. _ 9. _答 案2014高考数学(文)一轮:一课双测A+B精练(四十七)A级1A2.C3.B4.A5选A将圆的方程变形为(x1)2(y3)2105a,可知,圆心为(1,3),且105a0,即a2.圆关于直线yx2b对称,圆心在直线yx2b上,即312b,解得b2,ab4.6选C圆心(1,1)到点M的距离的最小值为点(1,1)到直线的距离d,故点N到点M的距离的最小值为d1.7解析:因为AOB是直角三角形,所以内切圆半径为r3,圆心坐标为(3,3),故内切圆方程为(x3)2(y3)29.答案:(x3)2(y3)298解析:设所求圆的半径是R,依题意得,抛物线y24x的焦点坐标是(1,0),则圆C的圆心坐标是(0,1),圆心到直线4x3y20的距离d1,则R2d2210,因此圆C的方程是x2(y1)210.答案:x2(y1)2109解析:表示圆上的点P(x,y)与点Q(1,2)连线的斜率,所以的最小值是直线PQ与圆相切时的斜率设直线PQ的方程为y2k(x1)即kxy2k0.由1得k,结合图形可知,故最小值为.答案:10解:由题意知,这两个圆的圆心都在第一象限,且在直线yx上,故可设两圆方程为(xa)2(ya)2a2,(xb)2(yb)2b2,且r1a,r2b.由于两圆都过点C,则(3a)2(4a)2a2,(3b)2(4b)2b2即a214a250,b214b250.则a、b是方程x214x250的两个根故r1r2ab25.11解:(1)直线AB的斜率k1,AB的中点坐标为(1,2)则直线CD的方程为y2(x1),即xy30.(2)设圆心P(a,b),则由P在CD上得ab30.又直径|CD|4,|PA|2,(a1)2b240.由解得或圆心P(3,6)或P(5,2)圆P的方程为(x3)2(y6)240或(x5)2(y2)240.12解:(1)方程C可化为(x1)2(y2)25m,显然只要5m0,即m5时方程C表示圆(2)因为圆C的方程为(x1)2(y2)25m,其中m5,所以圆心C(1,2),半径r,则圆心C(1,2)到直线l:x2y40的距离为d,因为|MN|,所以|MN|,所以5m22,解得m4.B级1选B双曲线的渐近线方程为xy0,其右焦点为(3,0),所求圆半径r,所求圆方程为(x3)2y23.2选B根据切线长、圆的半径和圆心到点P的距离的关系,可知|PT|,故|PT|最小时,即|PC|最小,此时PC垂直于直线yx2,则直线PC的方程为y2(x4),即yx2,联立方程解得点P的坐标为(0,2)3解:(1)设圆M的方程为(xa)2(yb)2r2(r0)根据题意,得解得ab1,r2,故所求圆M的方程为(x1)2(y1)24.(2)因为四边形PAMB的面积SSPAMSPBM|AM|PA|BM|PB|
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 陶瓷电容器制造工岗位操作规程考核试卷及答案
- 电火花线切割机床操作工培训考核试卷及答案
- 五一活动策划方案公司问题
- 建筑节能墙体验收标准分析报告
- 2025版司法局《刑事答辩状》(空白模板)
- 私募基金的金融营销方案
- 雾化沥青封层施工方案
- 咨询健康方案
- 甘肃银行六一活动方案策划
- 金华活动策划方案价格评估
- 高速铁路桥隧养护维修 课件 1 铁路桥隧维修概述
- 塔吊安拆及检查培训课件
- 前程无忧测评题库及答案
- 职场仪表培训
- 【MOOC】通信原理-西安邮电大学 中国大学慕课MOOC答案
- 2024石油石化储罐腐蚀检测作业标准规范
- 2023中华护理学会团体标准-注射相关感染预防与控制
- 保洁员职业技能鉴定考试题库及答案
- 《科技创新梦想启航》主题班会
- 商业银行数据要素价值洞察研究白皮书2023
- 造粒塔滑模施工方案
评论
0/150
提交评论