2020届阜阳市高三(上)期末数学试卷(文科)(解析版)_第1页
2020届阜阳市高三(上)期末数学试卷(文科)(解析版)_第2页
2020届阜阳市高三(上)期末数学试卷(文科)(解析版)_第3页
2020届阜阳市高三(上)期末数学试卷(文科)(解析版)_第4页
2020届阜阳市高三(上)期末数学试卷(文科)(解析版)_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2019-2020学年安徽省阜阳市高三(上)期末数学试卷(文科)一、选择题(本大题共12小题,共60.0分)1. 设集合A=x|-3x-1,B=x|x2-4x-120,则AB=()A. -2,-1)B. (-2,-1)C. (-1,6D. (-3,-1)2. 已知复数z=2-i,为z的共轭复数,则(1+z)=()A. 5+iB. 5-iC. 7-iD. 7+i3. 已知平面向量=(2,1),=(2,4),则向量,夹角的余弦值为()A. B. C. D. 4. 某单位去年的开支分布的折线图如图1所示,在这一年中的水、电、交通开支(单位:万元)如图2所示,则去年的水费开支占总开支的百分比为()A. 6.25%B. 7.5%C. 10.25%D. 31.25%5. 已知tan=,则cos(2-)=()A. B. C. D. 6. 若x,y满足约束条件,则z=4x+y的最大值为()A. -5B. -1C. 5D. 67. 已知双曲线C:(a0,b0)的焦点到它的渐近线的距离为2,点P(-3,-2)是双曲线C上的一点,则双曲线C的离心率为()A. B. C. D. 8. 将函数f(x)=sin(3x+)的图象向右平移m(m0)个单位长度,得到函数g(x)的图象,若g(x)为奇函数,则m的最小值为()A. B. C. D. 9. 已知p:ln2ln9lnlna,q:函数f(x)=|lnx|-a在(0,e4上有2个零点,则p是q的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件10. 一个由两个圆柱组合而成的的密闭容器内装有部分液体,小圆柱底面半径为r1,大圆柱底面半径为r2,如图1放置容器时,液面以上空余部分的高为h1如图2放置容器,液面以上空余部分的高为h2则=()A. B. C. D. 11. 已知定义在R上的函数f(x)满足f(x)=f(-x),且在0,+)上是增函数,不等式f(ax+2)f(-1)对于x1,2恒成立,则a的取值范围是()A. -1.5,-1B. -1,-0.5C. -0.5,0D. 0,112. 已知函数f(x)=恰有一个极值点为1,则实数t的取值范围是()A. B. C. D. 二、填空题(本大题共4小题,共20.0分)13. 已知等差数列an的前n项和是Sn,公差d=3,且a1、a3、a8成等比数列,则S10=_14. 中国是发现和研究勾股定理最古老的国家之一直角三角形最短的边称为勾,另一直角边为股,斜边为弦,其三边长组成的一组数据成为勾股数现从15这5个数中随机选取3个不同的数,这三个数为勾股数的概率为_15. 如图,圆锥VO的母线长为l,轴截面VAB的顶角AVB=150,则过此圆锥的顶点作该圆锥的任意截面VCD,则VCD面积的最大值是_,此时VCD=_16. 过抛物线C:x2=4y的准线上任意一点P作抛物线的切线PA、PB,切点分别为A、B则A点到准线的距离与B点到准线的距离之和的最小值是_三、解答题(本大题共6小题,共70.0分)17. ABC的内角A,B,C的对边分别为a,b,c,已知(sinA+sinB)(a-b)+bsinC=csinC点D为边BC的中点,且AD=(1)求A;(2)若b=2c,求ABC的面积18. 已知数列an满足a1=1,且an+1=(1)证明数列是等差数列,并求数列an的通项公式(2)若bn=,求数列bn的前n项和Sn19. 中央广播电视总台2019主持人大赛是中央人民广播电视总台成立后推出的第一个电视大赛,由撒贝宁担任主持人,康辉、董卿担任点评嘉宾,敬一丹、鲁健、朱迅、俞虹、李宏岩等17位担任专业评审从2019年10月26日起,每周六20:00在中央电视台综合频道播出,某传媒大学为了解大学生对主持人大赛的关注情况,分别在大一和大二两个年级各随机抽取了100名大学生进行调查如图是根据调查结果绘制的学生场均关注比赛的时间频率分布直方图和频数分布表,并将场均关注比赛的时间不低于80分钟的学生称为“赛迷”大二学生场均关注比赛时间的频数分布表时间分组频数0,20)1220,40)2040,60)2460,80)2280,100)16100,1206(1)将频率视为概率,估计哪个年级的大学生是“赛迷”的概率大,请说明理由;(2)已知抽到的100名大一学生中有男生50名,其中10名为“赛迷”试完成下面的22列联表,并据此判断是否有90%的把握认为“塞迷”与性别有关非“塞迷”“塞迷”合计男女合计附:,其中n=a+b+c+dP(K2k0)0.150.100.050.025k02.0722.7063.8415.02420. 如图1,在等腰梯形ABF1F2中,两腰AF2=BF1=2,底边AB=6,F1F2=4,D、C是AB的三等分点,E是F1F2的中点分别沿CE,DE将四边形BCEF1和ADEF2折起,使F1、F2重合于点F,得到如图2所示的几何体在图2中,M、N分别为CD、EF的中点(1)证明:MN平面ABCD(2)求几何体ABF-DCE的体积21. 已知椭圆C:=1(a1)的左顶点为A,右焦点为F,斜率为1的直线与椭圆C交于A、B两点,且OBAB,其中O为坐标原点(1)求椭圆C的标准方程;(2)设过点F且与直线AB平行的直线与椭圆C交于M、N两点,若点P满足,且NP与椭圆C的另一个交点为Q,求的值22. 设函数f(x)=x-tlnx,其中x(0,1),t为正实数(1)若不等式f(x)0恒成立,求实数t的取值范围;(2)当x(0,1)时,证明x2+x-1exlnx答案和解析1.【答案】A【解析】解:集合B=x|x2-4x-120=x|-2x6,集合A=x|-3x-1,AB=x|-2x-1,故选:A先求出集合B,再利用集合的交集运算即可求出AB本题主要考查了集合的基本运算,是基础题2.【答案】D【解析】解:z=2-i,=2+i,则(1+z)=(3-i)(2+i),=7+i故选:D直接利用复数代数形式的乘除运算及共轭复数的概念进行化简,即可求解本题考查了复数代数形式的乘除运算,考查了共轭复数的概念,是基础题3.【答案】B【解析】解:=(2,1),=(2,4),故选:B根据向量的坐标,以及向量夹角的余弦公式即可求出的值本题考查了向量数量积的坐标运算,根据向量坐标求向量长度的方法,向量夹角的余弦公式,考查了计算能力,属于基础题4.【答案】A【解析】解:由拆线图知去年水、电、交通支出占总支出的百分比为20%,由条形图得去年水、电、交通支出合计为:250+450+100=800(万元),共中水费支出250(万元),去年的水费开支占总开支的百分比为:=6.25%故选:A由拆线图知去年水、电、交通支出占总支出的百分比为20%,由条形图得去年水、电、交通支出合计为250+450+100=800(万元),共中水费支出250(万元),由此能求出去年的水费开支占总开支的百分比本题考查去年的水费开支占总开支的百分比的求法,考查拆线图、条形图等基础知识,考查运算求解能力,是基础题5.【答案】D【解析】解:已知tan=,则cos(2-)=(sin2+cos2)=,故选:D利用二倍角公式把cos(2-)化成齐次式,再化成正切,代入即可考查二倍角公式的应用,中档题6.【答案】C【解析】解:由约束条件作出可行域如图,联立,解得C(1,1)化目标函数z=4x+y为y=-4x+z,由图可知,当直线y=-4x+z过点C时,直线在y轴上的截距最大,z有最大值为5故选:C由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题7.【答案】C【解析】解:双曲线C:(a0,b0)的焦点到它的渐近线的距离为2,可得b=2,点P(-3,-2)是双曲线C上的一点,可得,解得a=3,则c=,所以双曲线的离心率为:e=故选:C利用已知条件求出b,顶点坐标代入双曲线方程求解a,然后求解离心率即可本题考查双曲线的简单性质的应用,是基本知识的考查,基础题8.【答案】C【解析】解:将函数f(x)=sin(3x+)的图象向右平移m(m0)个单位长度,得到函数g(x)=sin(3x-3m+)的图象,又g(x)为奇函数,-3m+=k,kZ,解得m=-k,kZ,m0,可得mmin=,故选:C先由题意写出g(x)解析式,根据g(x)为奇函数,进而可求出m的值本题主要考查三角函数的图象变换,以及三角函数的性质,熟记正弦型函数的性质即可,属于常考题型9.【答案】B【解析】解:p:ln2ln9lnlna,即,即4ln2lna,即0a16,q:函数f(x)=|lnx|-a在(0,e4上有2个零点,即|lnx|=a,在(0,e4上有2个交点,则0a4,则p是q的必要不充分条件,故选:B先化简命题,再讨论充要性本题考查充要性,对数函数的求解,零点,属于基础题10.【答案】B【解析】解:在图1中,液面以上空余部分的体积为:,在图2中,液面以上空余部分的体积为:,=,=故选:B在图1中,液面以上空余部分的体积为:,在图2中,液面以上空余部分的体积为:,由=,能求出本题考查两个圆柱的高的比值的求法,考查空间直线与直线、直线与平面、平面与平面的位置关系、空间几何体的体积等基础知识,考查的数学素养主要有逻辑推理、直观想象等11.【答案】A【解析】解:f(x)满足f(x)=f(-x),故f(x)为偶函数,且在0,+)上是增函数,根据偶函数的对称性可知,(-,0)上单调递减,距离对称轴越远,函数值越大,不等式f(ax+2)f(-1)对于x1,2恒成立,则|ax+2|1,-1ax+21,即-3ax-1对于x1,2恒成立,根据一次函数的性质可得,解可得,故选:A由题意f(x)为偶函数,且在0,+)上是增函数,根据偶函数的对称性可知,(-,0)上单调递减,距离对称轴越远,函数值越大,由题意可得|ax+2|1,对于x1,2恒成立,然后结合一次函数的性质可求本题主要考查了偶函数对称性的简单应用,及函数恒成立问题的应用,属于中档试题12.【答案】C【解析】解:由题意知函数的定义域为(0,+),函数f(x)恰有一个极值点1,f(x)=0有且仅有一个解,即x=1是它的唯一解,也就是另一个方程无解,令,则,函数g(x)在(0,+)上单调递增,从而,所以当时,方程无解,故选:C解题的关键是把问题转化为方程无解,进而构造函数求解本题考查利用导数研究函数的单调性,极值及最值,考查化简变形及逻辑推理能力,属于中档题13.【答案】175【解析】解:由题意,数列an是公差为3的等差数列,则a3=a1+2d=a1+6,a8=a1+21a1、a3、a8成等比数列,根据等比中项的性质,可得=a1a8,即(a1+6)2=a1(a1+21)解得a1=4等差数列an的首项为4S10=104+3=175故答案为:175本题先根据数列an是公差为3的等差数列,写出a3、a8,然后根据等比中项的性质列出得=a1a8,解出a1,再根据等差数列求和公式即可算出结果本题主要考查等差数列的性质以及求和公式,等比数列的性质,考查了数学计算能力本题属中档题14.【答案】【解析】解:现从15这5个数中随机选取3个不同的数,基本事件总数n=10,这三个数为勾股数包含的基本事件(a,b,c)有:(3,4,5),共1个,这三个数为勾股数的概率为p=故答案为:基本事件总数n=10,这三个数为勾股数包含的基本事件(a,b,c)有:(3,4,5),共1个,由此能求出这三个数为勾股数的概率本题考查概率的求法,考查列举法等基础知识,考查运算求解能力,是基础题15.【答案】 45【解析】解:过此圆锥的顶点作该圆锥的任意截面VCD,则VCD面积的最大值时是等腰直角三角形时,此时SVCD=12sin90=,且VCD=45故答案分别为:,45过圆锥顶点的任意截面中,轴截面的面积最大,所以可得VCD为等腰直角三角形,由题意求出截面的最大面积及角考查圆锥的轴截面时过顶点的最大面积的三角形,属于基础题16.【答案】4【解析】解:显然直线AB的斜率存在,设直线ABA的方程为:y=kx+b,设A(x,y),)B(x,y),由题意知焦点F(0,1),联立与抛物线的方程:x2-4kx-4b=0,x+x=4k,xx=-4b,16k2+16b0,b-k2,AB=4,A点到准线的距离与B点到准线的距离之和=AF+BF,当A,F,B三点共线时最小,这时b=1,当A,F,B三点共线时最小,所以AF+BF=AB=4=4(1+k2)4,这时直线AB平行于x轴故答案为:4到准线的距离转化为到焦点的距离,三点共线时距离最小,进而求出最小值考查抛物线的性质,属于中档题17.【答案】解:(1)ABC中,(sinA+sinB)(a-b)+bsinC=csinC;(sinA+sinB)(a-b)=(sinC-sinB)c,由正弦定理可得,(a+b)(a-b)=(c-b)c,化简可得,b2+c2-a2=bc,由余弦定理可得,cosA=,0A,A=,(2)b2+c2-a2=bc,b=2c,a2=3c2=b2-c2,B=,C=;在直角BAD中,AD2=c2+7=c2+c2c=2,a=2;SABC=ac=2【解析】(1)由已知结合正弦定理可得,b2+c2-a2=bc,然后结合余弦定理可求cosA,进而可求A;(2)先结合第一问的结论求出B=,C=;再在直角BAD中求出边长即可求出结论本题综合考查了正弦定理,余弦定理,三角形的面积公式等知识的综合应用,属于中档试题18.【答案】解:(1)证明:数列an满足a1=1,且an+1=则:-=(常数),故数列数列是以为首项,为公差的等差数列所以,整理得(首项符合通项)故(2)由于,所以故,设,则:,2,-得:,所以所以数列bn的前n项和Sn=(n-1)2n+1【解析】(1)直接利用数列的递推关系式的应用求出数列的通项公式(2)利用(1)的结论,进一步利用乘公比错位相减法的应用求出数列的和本题考查的知识要点:数列的通项公式的求法及应用,乘公比错位相减法在数列求和中的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型19.【答案】解:(1)由频率分布直方图知,大一学生是“赛迷”的概率为P1=(0.0100+0.0025)20=0.25;由频数分布表知,大二学生是“赛迷”的概率为P2=0.22;因为P1P2,所以大一年级的学生是“赛迷”的概率大;(2)由题意填写22列联表如下:非“赛迷”“赛迷”合计男401050女351550合计7525100将22列联表中的数据代入公式计算,得K2=1.3332.706,所以没有90%的把握认为“塞迷”与性别有关【解析】(1)由频率分布直方图和频数分布表,分别求出大一、大二学生是“赛迷”的频率值,再比较即可;(2)由题意填写列联表,计算观测值,对照临界值得出结论本题考查了列联表与独立性检验的问题,是基础题20.【答案】解:(1)证明:连结DN,由题意得CN=DN,CE=CF=2,MNCD,DNEF,CNEF,DNCN=N,EF平面CDN,MN平面CDN,EFMN,EFBC,MNBC,CDBC=C,MN平面ABCD(2)解:设几何体ABF-DCE高为h=EF=2,几何体ABF-DCE的体积:V=SCDNh=2【解析】(1)连结DN,由题意得CN=DN,CE=CF=2,从而MNCD,DNEF,CNEF,进而EF平面CDN,EFMN,由EFBC,得MNBC,由此能证明MN平面ABCD(2)设几何体ABF-DCE高为h=EF=2,几何体ABF-DCE的体积V=SCDNh,由此能求出结果本题考查线面垂直的证明,考查几何体的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题21.【答案】解:(1)由题意得,设直线AB的方程:x=y-a,与椭圆联立整理得:(1+a2)y2-2ay=0,yB=,xB=,因为OBAB,=-1,a1,解得:a2=3,所以椭圆C的标准方程:=1;(2)由(1)得,F(,0)所以由题意得直线MN的方程为:,设M(x1,y1),N(x2,y2),Q(x3,y3),将代入=1,得,则,设,则,即,点Q(x3,y3)在椭圆C上,整理得,由上知,且,即7m2-18m-25=0,解得或m=-1(舍),故【解析】(1)设出直线AB的方程,与椭圆方程联立,求出点B的坐标,再根据OBAB,建立关于a的方程,解出即可;(2)设M(x1,y1),N(x2,y2),Q(x3,y3),

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论