




已阅读5页,还剩18页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 IntroductiontoKalmanFilters MichaelWilliams5June2003 2 Overview TheProblem WhydoweneedKalmanFilters WhatisaKalmanFilter ConceptualOverviewTheTheoryofKalmanFilterSimpleExample 3 TheProblem SystemstatecannotbemeasureddirectlyNeedtoestimate optimally frommeasurements MeasuringDevices Estimator MeasurementErrorSources SystemState desiredbutnotknown ExternalControls ObservedMeasurements OptimalEstimateofSystemState SystemErrorSources System BlackBox 4 WhatisaKalmanFilter RecursivedataprocessingalgorithmGeneratesoptimalestimateofdesiredquantitiesgiventhesetofmeasurementsOptimal ForlinearsystemandwhiteGaussianerrors Kalmanfilteris best estimatebasedonallpreviousmeasurementsFornon linearsystemoptimalityis qualified Recursive Doesn tneedtostoreallpreviousmeasurementsandreprocessalldataeachtimestep 5 ConceptualOverview SimpleexampletomotivatetheworkingsoftheKalmanFilterTheoreticalJustificationtocomelater fornowjustfocusontheconceptImportant PredictionandCorrection 6 ConceptualOverview Lostonthe1 dimensionallinePosition y t AssumeGaussiandistributedmeasurements y 7 ConceptualOverview SextantMeasurementatt1 Mean z1andVariance z1Optimalestimateofpositionis t1 z1Varianceoferrorinestimate 2x t1 2z1Boatinsamepositionattimet2 Predictedpositionisz1 8 ConceptualOverview Sowehavetheprediction t2 GPSMeasurementatt2 Mean z2andVariance z2Needtocorrectthepredictionduetomeasurementtoget t2 Closertomoretrustedmeasurement linearinterpolation prediction t2 measurementz t2 9 ConceptualOverview CorrectedmeanisthenewoptimalestimateofpositionNewvarianceissmallerthaneitheroftheprevioustwovariances measurementz t2 correctedoptimalestimate t2 prediction t2 10 ConceptualOverview Lessonssofar Makepredictionbasedonpreviousdata Takemeasurement zk z Optimalestimate Prediction KalmanGain Measurement Prediction Varianceofestimate Varianceofprediction 1 KalmanGain 11 ConceptualOverview Attimet3 boatmoveswithvelocitydy dt uNa veapproach ShiftprobabilitytotherighttopredictThiswouldworkifweknewthevelocityexactly perfectmodel t2 Na vePrediction t3 12 ConceptualOverview BettertoassumeimperfectmodelbyaddingGaussiannoisedy dt u wDistributionforpredictionmovesandspreadsout t2 Na vePrediction t3 Prediction t3 13 ConceptualOverview Nowwetakeameasurementatt3NeedtoonceagaincorrectthepredictionSameasbefore Prediction t3 Measurementz t3 Correctedoptimalestimate t3 14 ConceptualOverview Lessonslearntfromconceptualoverview Initialconditions k 1and k 1 Prediction k k Useinitialconditionsandmodel eg constantvelocity tomakepredictionMeasurement zk TakemeasurementCorrection k k Usemeasurementtocorrectpredictionby blending predictionandresidual alwaysacaseofmergingonlytwoGaussiansOptimalestimatewithsmallervariance 15 TheoreticalBasis Processtobeestimated yk Ayk 1 Buk wk 1 zk Hyk vk ProcessNoise w withcovarianceQ MeasurementNoise v withcovarianceR KalmanFilter Predicted kisestimatebasedonmeasurementsatprevioustime steps k k K zk H k Corrected khasadditionalinformation themeasurementattimek K P kHT HP kHT R 1 k Ayk 1 Buk P k APk 1AT Q Pk I KH P k 16 BlendingFactor Ifwearesureaboutmeasurements Measurementerrorcovariance R decreasestozeroKdecreasesandweightsresidualmoreheavilythanpredictionIfwearesureaboutpredictionPredictionerrorcovarianceP kdecreasestozeroKincreasesandweightspredictionmoreheavilythanresidual 17 TheoreticalBasis 18 QuickExample ConstantModel MeasuringDevices Estimator MeasurementErrorSources SystemState ExternalControls ObservedMeasurements OptimalEstimateofSystemState SystemErrorSources System BlackBox 19 QuickExample ConstantModel Prediction k k K zk H k Correction K P k P k R 1 k yk 1 P k Pk 1 Pk I K P k 20 QuickExample ConstantModel 21 QuickExample ConstantModel ConvergenceofErrorCovariance Pk 22 QuickExample ConstantModel LargervalueofR themeasurementerrorcovariance indicatespoorerqualityofmeasurements Filterslowerto believe measurements slowerconvergence 23 References Kalman R E 1960 ANewApproachtoLinearFilteringandPredictionProblems TransactionoftheASME Journa
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 天津团员考试试题及答案
- 2025年高压低压电工特种作业操作证进网许可证考试题库(附答案)
- 2025年高校教师资格证之《高等教育心理学》练习题库完整答案详解
- 2025年高级会计师岗位面试真题及答案解析
- 2025年高等院校逻辑学考试真题及答案
- 言语治疗期末试题及答案
- 下属企业公章管理办法
- 网格化管理办法模板
- 绿茶叶种植管理办法
- 规范小型船艇管理办法
- 合伙需要签订的五份协议书
- 非物质文化遗产概论(第二版)全册教案
- 质押合同解除通知函
- 农业特色产业培训课件
- 中国古代十大传世名画
- CityEngine城市三维建模入门教程 课件全套 第1-7章 CityEngine概述-使用Python脚本语言
- 药品储存培训课件
- 通信电源通信电源的概念
- JCT412.1-2018 纤维水泥平板 第1部分:无石棉纤维水泥平板
- 中国空白地图(打印)
- 人格心理学导论-第1章-人格心理学概述
评论
0/150
提交评论