已阅读5页,还剩18页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 IntroductiontoKalmanFilters MichaelWilliams5June2003 2 Overview TheProblem WhydoweneedKalmanFilters WhatisaKalmanFilter ConceptualOverviewTheTheoryofKalmanFilterSimpleExample 3 TheProblem SystemstatecannotbemeasureddirectlyNeedtoestimate optimally frommeasurements MeasuringDevices Estimator MeasurementErrorSources SystemState desiredbutnotknown ExternalControls ObservedMeasurements OptimalEstimateofSystemState SystemErrorSources System BlackBox 4 WhatisaKalmanFilter RecursivedataprocessingalgorithmGeneratesoptimalestimateofdesiredquantitiesgiventhesetofmeasurementsOptimal ForlinearsystemandwhiteGaussianerrors Kalmanfilteris best estimatebasedonallpreviousmeasurementsFornon linearsystemoptimalityis qualified Recursive Doesn tneedtostoreallpreviousmeasurementsandreprocessalldataeachtimestep 5 ConceptualOverview SimpleexampletomotivatetheworkingsoftheKalmanFilterTheoreticalJustificationtocomelater fornowjustfocusontheconceptImportant PredictionandCorrection 6 ConceptualOverview Lostonthe1 dimensionallinePosition y t AssumeGaussiandistributedmeasurements y 7 ConceptualOverview SextantMeasurementatt1 Mean z1andVariance z1Optimalestimateofpositionis t1 z1Varianceoferrorinestimate 2x t1 2z1Boatinsamepositionattimet2 Predictedpositionisz1 8 ConceptualOverview Sowehavetheprediction t2 GPSMeasurementatt2 Mean z2andVariance z2Needtocorrectthepredictionduetomeasurementtoget t2 Closertomoretrustedmeasurement linearinterpolation prediction t2 measurementz t2 9 ConceptualOverview CorrectedmeanisthenewoptimalestimateofpositionNewvarianceissmallerthaneitheroftheprevioustwovariances measurementz t2 correctedoptimalestimate t2 prediction t2 10 ConceptualOverview Lessonssofar Makepredictionbasedonpreviousdata Takemeasurement zk z Optimalestimate Prediction KalmanGain Measurement Prediction Varianceofestimate Varianceofprediction 1 KalmanGain 11 ConceptualOverview Attimet3 boatmoveswithvelocitydy dt uNa veapproach ShiftprobabilitytotherighttopredictThiswouldworkifweknewthevelocityexactly perfectmodel t2 Na vePrediction t3 12 ConceptualOverview BettertoassumeimperfectmodelbyaddingGaussiannoisedy dt u wDistributionforpredictionmovesandspreadsout t2 Na vePrediction t3 Prediction t3 13 ConceptualOverview Nowwetakeameasurementatt3NeedtoonceagaincorrectthepredictionSameasbefore Prediction t3 Measurementz t3 Correctedoptimalestimate t3 14 ConceptualOverview Lessonslearntfromconceptualoverview Initialconditions k 1and k 1 Prediction k k Useinitialconditionsandmodel eg constantvelocity tomakepredictionMeasurement zk TakemeasurementCorrection k k Usemeasurementtocorrectpredictionby blending predictionandresidual alwaysacaseofmergingonlytwoGaussiansOptimalestimatewithsmallervariance 15 TheoreticalBasis Processtobeestimated yk Ayk 1 Buk wk 1 zk Hyk vk ProcessNoise w withcovarianceQ MeasurementNoise v withcovarianceR KalmanFilter Predicted kisestimatebasedonmeasurementsatprevioustime steps k k K zk H k Corrected khasadditionalinformation themeasurementattimek K P kHT HP kHT R 1 k Ayk 1 Buk P k APk 1AT Q Pk I KH P k 16 BlendingFactor Ifwearesureaboutmeasurements Measurementerrorcovariance R decreasestozeroKdecreasesandweightsresidualmoreheavilythanpredictionIfwearesureaboutpredictionPredictionerrorcovarianceP kdecreasestozeroKincreasesandweightspredictionmoreheavilythanresidual 17 TheoreticalBasis 18 QuickExample ConstantModel MeasuringDevices Estimator MeasurementErrorSources SystemState ExternalControls ObservedMeasurements OptimalEstimateofSystemState SystemErrorSources System BlackBox 19 QuickExample ConstantModel Prediction k k K zk H k Correction K P k P k R 1 k yk 1 P k Pk 1 Pk I K P k 20 QuickExample ConstantModel 21 QuickExample ConstantModel ConvergenceofErrorCovariance Pk 22 QuickExample ConstantModel LargervalueofR themeasurementerrorcovariance indicatespoorerqualityofmeasurements Filterslowerto believe measurements slowerconvergence 23 References Kalman R E 1960 ANewApproachtoLinearFilteringandPredictionProblems TransactionoftheASME Journa
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025安徽亳州文化旅游控股集团有限公司招聘35人笔试历年常考点试题专练附带答案详解2套试卷
- 2025国家电投集团能源科技工程有限公司招聘13人笔试历年典型考点题库附带答案详解2套试卷
- 2025云南楚雄市教育体育系统校园招聘教师36人笔试历年难易错考点试卷带答案解析2卷
- 2025中国安能二局厦门分公司应急技能人才招聘20人笔试历年难易错考点试卷带答案解析2套试卷
- 多尺度特征融合的自监督策略-洞察及研究
- 呼吸道过敏性疾病研究-洞察及研究
- 多式联运网络架构设计-洞察及研究
- 江苏省扬州市梅岭中学2026届生物高二上期末质量检测试题含解析
- 贵州省独山县第四中学2026届高二上生物期末学业水平测试模拟试题含解析
- 2026届广东省广州市重点初中化学高二上期末达标检测模拟试题含答案
- 马路护栏拆除申请书
- 绵阳市奥林匹克体育学校2025年公开考核招聘教练员考试参考试题及答案解析
- 桦树汁收集创新创业项目商业计划书
- 俄语对外二级考试考题及答案
- 2025年时政热点知识竞赛试卷及答案
- 部编版语文五年级上册重点难点解析
- 第一单元 学习项目二+音乐开启心灵之窗 教学设计 2024-2025学年人教版(2024)初中音乐七年级上册
- 蔬菜生产规划方案(3篇)
- 利他思维的销售模式课件
- 口腔输液处方应用与管理
- 高中生物学会考大通关必修1
评论
0/150
提交评论