数学人教版六年级下册教学设计.doc_第1页
数学人教版六年级下册教学设计.doc_第2页
数学人教版六年级下册教学设计.doc_第3页
数学人教版六年级下册教学设计.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课题鸽巢问题(1) 备课人:隗成祥教学目标1、知识与技能:通过操作、观察、比较、推理等活动,初步了解鸽巢原理,学会简单的鸽巢原理分析方法,运用鸽巢原理的知识解决简单的实际问题。2、过程与方法:在鸽巢原理的探究过程中,使学生逐步理解和掌握鸽巢原理,经历将具体问题数学化的过程,培养学生的模型思想。3、情感态度:通过对鸽巢原理的灵活运用,感受数学的魅力,体会数学的价值,提高学生解决问题的能力和兴趣。教学重难点教学重点:理解鸽巢原理,掌握先“平均分”,再调整的方法。教学难点:理解“总有”“至少”的意义,理解“至少数=商数1”。教学环节教师活动学生活动一、游戏激趣二、设问导读(一)初步感知合作探究(二)列举法(三)假设法3、 巩固练习四、拓展延伸五、小结1、谈话:你们知道“料事如神”这个词是什么意思吗?今天老师也能做到“料事如神”,你们信不信?现在老师任意点13位同学,我就可以肯定,至少有2个同学的生日在同一个月。你们信吗?2、验证:学生报出生月份。根据所报的月份,统计13人中生日在同一个月的学生人数。适时引导:“至少2个同学”是什么意思? 3、设疑:你们想知道这是为什么吗?通过今天的学习,你就能解释这个现象了。下面我们就来研究这类问题,我们先从简单的情况入手研究。1、出示题目:有3支铅笔,2个笔筒(把实物摆放在讲桌上),把3支铅笔放进2个笔筒,怎么放?有几种不同的放法?谁愿意上来试一试。2、教师根据学生回答在黑板上画图和数的分解两种方法表示两种结果。(3,0)、(2、1)3、提出问题:“不管怎么放,总有一个笔筒里至少有2支铅笔”,这句话说得对吗?这句话里“至少有2支”是什么意思?4、得到结论:从刚才的实验中,我们可以看到3支铅笔放进2个笔筒,总有一个笔筒至少放进2支笔。过渡:如果现在有4支铅笔放进3个笔筒,还会出现这样的结论吗?1、小组合作:(1)画一画:借助“画图”或“数的分解”的方法把各种情况都表示出来;(2)找一找:每种摆法中最多的一个笔筒放了几支,用笔标出;(3)我们发现:总有一个笔筒至少放进了( )支铅笔。2、交流后明确:(1)四种情况:(4,0,0)、(3,1,0)、(2,1,1)、(2,2,0)(2)每种摆法中最多的一个笔筒放进了:4支、3支、2支。(3)总有一个笔筒至少放进了2支铅笔。3、小结:刚才我们通过“画图”、“数的分解”两种方法列举出所有情况验证了结论,这种方法叫“列举法”,我们能不能找到一种更为直接的方法,只摆一种情况,也能得到这个结论,找到“至少数”呢?1、学生尝试回答。(如果有困难,也可以直接投影书中有关“假设法”的截图)2、学生操作演示,教师图示。3、引导发现:(1)这种分法的实质就是先怎么分的?(2)为什么要一开始就平均分?,余下的1支,怎么放?(3)怎样用算式表示这种方法?算式中的两个“1”是什么意思?5、引伸拓展:(1)5支笔放进4个笔筒,总有一个笔筒至少放进( )支笔。(2)26支笔放进25个笔筒,总有一个笔筒至少放进( )支笔。(3)100支笔放进99个笔筒,总有一个笔筒至少放进( )支笔。学生列出算式,依据算式说理。6、发现规律:刚才的这种方法就是“假设法”,它里面就蕴含了“平均分”,我们用有余数的除法算式把平均分的过程简明的表示出来了,现在会用简便方法求“至少数”吗?1.把7本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有3本书。为什么?2.8只鸽子飞回3个鸽舍,至少有3只鸽子要飞进同一个鸽舍里。为什么?3.向东小学六年级共有370学生,其中六年(2)班有49名学生。下面的说法对吗?为什么?4、 在六年级的学生里至少有2人的生日是同一天的。5、六(2)班中至少有5人是同一个月出生的。6.张叔叔参加飞镖比赛,投了5镖,成绩是41环。张叔叔至少有一镖不低于9环。为什么?1、老师上课时提出的生日问题,现在你能解释吗?2、随意找13位老师,他们中至少有2个人的属相相同。为什么?3、11只鸽子飞进了4个鸽笼,总有一个鸽笼至少飞进了3只鸽子。为什么?4、5个人坐4把椅子,总有一把椅子上至少坐2人。为什么?5、把15本书放进4个抽屉中,不管怎么放,总有一个抽屉至少有4本书,为什么?开始上课时我们做的游戏还记得吗?为什么老师可以肯定的说:从52张牌中任意抽取5张,至少有2张是同一花色的?你能用所学的鸽巢问题来解释吗?这就是我们本节课要学的内容,鸽巢问题,大家是不是觉得鸽巢问题非常有意思呢,其实鸽巢原理的应用十分广泛,下节课我们也将继续学习鸽巢原理的应用问题。学生质疑生:也就是2人或2人以上,反过来,生日在同一个月的可能有2人,可能3人、4人、5人,也可以用一句话概括就是“至少有2人”学生上台实物演示。可能有两种情况:一个放3支,另一个不放;一个放2支,另一个放1支。学生尝试回答,师引导:这句话里“总有一个笔筒”是什么意思?(一定有,不确定是哪个笔筒,最多的笔筒)生:最少有2支,不少于2支,包括2支及2支以上)小组合作学生汇报,展台展示。学生进行语言描述:把4支铅笔平均放在3个笔筒里,每个笔筒放1支,余下的1支,无论放在哪个笔筒,那个笔筒就有2支笔,所以说总有一个笔筒至少放进了2支笔。(指名说,互相说)生:平均分生:均匀地分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论