数学北师大版八年级下册等腰、等边三角形的性质和判定方法(一).doc_第1页
数学北师大版八年级下册等腰、等边三角形的性质和判定方法(一).doc_第2页
数学北师大版八年级下册等腰、等边三角形的性质和判定方法(一).doc_第3页
数学北师大版八年级下册等腰、等边三角形的性质和判定方法(一).doc_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

等腰、等边三角形的性质和判定方法(一)教学目标1.理解并掌握等腰及等边三角形的定义,探索等腰、等边三角形的性质和判定方法2.能够用等腰、等边三角形的知识解决相应的数学问题教学重难点教学重点:等边三角形判定定理的发现与证明教学难点:引导学生全面、周到地思考问题教学过程问题:如图(1),已知ABC中,AB=AC求证:B=C;AD平分A,ADBC图(1)学生活动设计:学生在独立思考的基础上进行讨论,寻找解决问题的办法,若证B=C,根据全等三角形的知识可以知道,只需要证明这两个角所在的三角形全等即可,于是可以作辅助线构造两个三角形,做BC边上的中线AD,证明ABD和ACD全等即可,根据条件利用“边边边”可以证明教师活动设计:让学生充分讨论,根据所学的数学知识利用逻辑推理的方式进行证明,证明过程中注意学生表述的准确性和严谨性解答在ABD和ACD中所以ABDACD(SSS),所以B=C,BAD=CAD,ADB=ADC90添加辅助线的方法多样,让学生在去讨论交流,也为下边的讲解做铺垫如图(2),位于海上A、B两处的两艘救生船接到O处遇险船只的报警,当时测得AB如果这两艘救生船以同样的速度同时出发,能不能大约同时赶到出事地点(不考虑风浪因素)?图(2)学生活动设计:学生首先独立思考,然后可以分组讨论,观察问题中的条件,发现问题的本质是在条件AB下,线段AO和BO是否相等,证明两条线段相等,可以考虑这两条线段所在的三角形全等,而图中没有别的三角形,因此需要构造全等的三角形教师活动设计:教师启发学生发现问题本质,让学生探索“AO=BO”成立的原因,引导学生构造全等三角形:过O作OCAB于点C,利用AAS可以证明OAC和OBC全等,进而得到AO=BO最后归纳出等腰三角形的判定方法如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”)解答过点O作OCAB于点C,由AB、ACO=BCO、OC=OC易证AOCBOC,进而得到AO=BO三应用提高、拓展创新问题1如图(3),在ABC中,AB=AC,点D在AC上,且BD=BC=AD,求ABC各个内角的度数图(3)学生活动设计:学生小组合作、分组讨论,交流教师活动设计:引导学生分析图形中的关于角的数量关系(三角形的内角、外角、等腰三角形的底角)发现:(1)ABC=ACBCDBAABD;(2)AABD;(3)A2C180若设Ax,则有x4x180,得到x36,进一步得到两个底角的度数问题2如图(4),CAE是ABC的一个外角,12,AD/BC,求证:AB=AC图(4)师生活动设计:学生自主探索,必要时教师进行引导,利用等腰三角形的判定方法来证明,只要推出B=C即可,由AD/BC和AD平分EAC容易得到四归纳小结小结:每个小组说说自己的收获1等腰三角形的定义及相关概念2等腰三角形的性质和判定(二)教学目标知识与技能:1会阐述、推证等边三角形的性质和判定方法2有一个角为30的直角三角形的性质的简单应用能力目标:经历“猜想验证总结归纳应用”的探究过程,采用自主探索与合作交流的方式,亲历“做数学”的过程,培养探究 数学问题、解决问题的能力情感目标:1体验数学充满着探索与创造,感受数学的严谨性,对数学产生强烈的好奇心和求知欲2在学习中获得成功的体验,感受到数学学习的乐趣,建立自信心3体会数学源于生活而又反作用于生活,培养用数学的意识教学重难点教学重点:等边三角形的性质判定的证明及应用教学难点:含30角的直角三角形性质定理发现与证明教学过程一知识回顾等边三角形1等边三角形定义:三边相等的三角形叫做等边三角形,也称正三角形等边三角形与等腰三角形的关系:等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形讨论:等边三角形的性质?(学生分组讨论,教师提示从角、边、重要线段、对称性去考虑)2等边三角形的性质(1)等边三角形的三条边相等;(2)等边三角形的内角相等,且为60;(3)等边三角形每条边上的中线、高线和所对角的平分线互相重合(三线合一);(4)等边三角形是轴对称图形,有三条对称轴二新课学习1等边三角形的判定:(1)三边相等的三角形是等边三角形(2)三角相等的三角形是等边三角形(3)有一个角是60的等腰三角形是等边三角形2例题分析例1:已知D、E分别是等边ABC中AB、AC上的点,且AE=BD,求BE与CD的夹角是多少度?例2:如图,ABC中,AB=AC,BAC=120,ADAC交BC于点D,求证:BC=3AD.3定理:在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半已知:如图,在RtABC中,C=90,BAC=30求证:BC=AB 分析:从三角尺的摆拼过程中得到启发,延长BC至D,使CD=BC,连接AD证明:在ABC中,ACB=90,BAC=30,则B=60延长BC至D,使CD=BC,连接AD(如上图)ACB=60,ACD=90AC=AC,ABCADC(SAS)AB=AD(全等三角形的对应

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论