数学北师大版九年级上册特殊平行四边形复习.doc_第1页
数学北师大版九年级上册特殊平行四边形复习.doc_第2页
数学北师大版九年级上册特殊平行四边形复习.doc_第3页
数学北师大版九年级上册特殊平行四边形复习.doc_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

特殊平行四边形复习课教案新都区蜀龙学校 陈 静【教学目标】1、通过对几种平行四边形的回顾与思考,使学生梳理所学的知识,系统地复习平行四边形与各种特殊平行四边形的定义、性质、判定方法;2、正确理解平行四边形与各种特殊平行四边形的联系与区别,在反思和交流过程中,逐渐建立知识体系;3、引导学生独立思考,通过归纳、概括、实践等系统数学活动,感受获得成功的体验,形成科学的学习习惯。【教学重点】1、平行四边形与各种特殊平行四边形的区别。2、梳理平行四边形、矩形、菱形、正方形的知识体系及应用方法。【教学难点】平行四边形与各种特殊平行四边形的定义、性质、判定的综合运用。【教学模式】以题代纲,梳理知识-变式训练,查漏补缺 -综合训练,总结规律-测试练习,提高效率【教具准备】三角板、实物投影仪、电脑、自制课件。【教学过程】一、查漏补缺,知识回顾1、几种图形的定义2、几种图形的关系图3、几种图形的性质判定平行四边形矩形菱形正方形性质边对边平行且相等对边平行且相等对边平行,四边相等对边平行,四边相等角对角相等四个角都是直角对角相等四个角都是直角对角线互相平分互相平分且相等互相垂直平分,且每条对角线平分一组对角互相垂直平分且相等,每条对角线平分一组对角判定1、两组对边分别平行;2、两组对边分别相等;3、一组对边平行且相等;4、两组对角分别相等;5、两条对角线互相平分.1、有三个角是直角的四边形;2、有一个角是直角的平行四边形;3、对角线相等的平行四边形.1、四边相等的四边形;2、对角线互相垂直的平行四边形;3、有一组邻边相等的平行四边形。4、每条对角线平分一组对角的四边形。1、有一个角是直角的菱形;2、对角线相等的菱形;3、有一组邻边相等的矩形;4、对角线互相垂直的矩形;对称性只是中心对称图形既是轴对称图形,又是中心对称图形面积S= ahS=abS=S= a24、 本章常用知识点二、题型回顾,掌握重点(一)、基础练习(1)矩形、菱形、正方形都具有的性质是(C) A对角线相等(矩、正) B. 对角线平分一组对角 (菱、正) C对角线互相平分 D. 对角线互相垂直 (菱、正)(2)、正方形具有,矩形也具有的性质是(A) A对角线相等且互相平分 B. 对角线相等且互相垂直 C. 对角线互相垂直且互相平分 D. 对角线互相垂直平分且相等(3)、如果一个四边形是中心对称图形,那么这个四边形一定( D ) A正方形B菱形C矩形 D平行四边形都是中心对称图形,A、B、C都是平行四边形(4)、矩形具有,而菱形不一定具有的性质是( B ) A. 对角线互相平分 B. 对角线相等 C. 对边平行且相等 D. 内角和为3600问:菱形的对角线一定不相等吗?错,因为正方形也是菱形。(5)、正方形具有而矩形不具有的特征是(D) A. 内角为3600 B. 四个角都是直角 C. 两组对边分别相等 D. 对角线平分对角问:那么正方形具有而菱形不具有的特征是什么?对角线相等2、集合表示,突出关系正方形平行四边形矩形菱形(二)一题多变,培养应变能力图1ABCDOEF例题1已知:如图1,ABCD的对角线AC、BD交于点O, EF过点O与AB、CD分别交于点E、F求证:OE=OF 1-21-1变式1在图1中,连结哪些线段可以构成新的平行四边形?为什么? 对角线互相平分的四边形是平行四边形。 (三)一题多解,培养发散思维BADCFE例2例题2已知:如图,在正方形ABCD,E是BC边上一点,F是CD的中点,且AE = DC + CE 求证:AF平分DAE 证法一:(延长法)延长EF,交AD的延长线于G(如图2-1)。 四边形ABCD是正方形, AD=CD,C=ADC=90(正方形四边相等,四个角都是直角) GDF=90, 2-1 12C =GDF 在EFC和GFD中 EFCGFD(ASA) CE=DG,EF=GF AE = DC + CE, AE = AD + DG = AG, AF平分DAE证法二:(延长法)延长BC,交AF的延长线于G(如图2-2) 四边形ABCD是正方形, AD / BC,DA=DC,FCG=D=90 (正方形对边平行,四边相等,四个角都是直角) ABDCFEG12342-2 3=G,FCG=90, FCG =D 在FCG和FDA中 FCG和FDA(ASA) CG=DA AE = DC + CE, AE = CG + CE = GE, 2-3 4 =G, 3 =4, AF平分DAE思考:如果用“截取法”,即在AE上取点G,使AG=AD,再连结GF、EF(如图2-3),这样能证明吗?变式2、在例2中,若将条件“AE = DC + CE”和结论“AF平分DAE”对换, 所得命题正确吗?为什么?你有几种证法? 三、 中考链接 平行四边形ABCD的周长为32cm, ABC的角平分线交边AD所在直线于点E,且AE:ED=3:2,则AB=_四、课堂小结,领悟思想方法 1一题多变,举一反三。 经常在解题之后进行反思改变命题的条件,或将命题的结论延伸,或将条件和结论互换,往往会有意想不到的收获。也只有这样,才能做到举一反三,提高应变能力。 2一题多解,触类旁通。 在平时的作业或练习中,通过一题多解,你不仅可以从中对比选出最优方法,提高自己在应考中的解题效率

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论