2010年北京市中考数学试卷(word版含解析答案).doc_第1页
2010年北京市中考数学试卷(word版含解析答案).doc_第2页
2010年北京市中考数学试卷(word版含解析答案).doc_第3页
2010年北京市中考数学试卷(word版含解析答案).doc_第4页
2010年北京市中考数学试卷(word版含解析答案).doc_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2010年北京市中考数学试卷一、选择题(共8小题,每小题4分,满分32分)1(2011孝感)2的倒数是()A2B2CD2(2010北京)2010年6月3日,人类首次模拟火星载人航天飞行试验“火星500”正式启动包括中国志愿者王跃在内的6名志愿者踏上了为期12480小时的“火星之旅”将12 480用科学记数法表示应为()A12.48103B0.1248105C1.248104D1.2481033(2010北京)如图,在ABC中,点D、E分AB、AC边上,DEBC,若AD:AB=3:4,AE=6,则AC等于()A3B4C6D84(2010北京)菱形的两条对角线的长分别是6和8,则这个菱形的周长是()A24B20C10D55(2010北京)从:1、2、3、4、5、6、7、8、9、10这十个数中随机取出一个数,取出的数是3的倍数的概率是()ABCD6(2010北京)将二次函数y=x22x+3化为y=(xh)2+k的形式,结果为()Ay=(x+1)2+4By=(x1)2+4Cy=(x+1)2+2Dy=(x1)2+27(2010北京)10名同学分成甲、乙两队进行篮球比赛,它们的身高(单位:cm)如下表所示:队员1队员2队员3队员4队员5甲队177176175172175乙队170175173174183设两队队员身高的平均数依次为甲,乙,身高的方差依次为S甲2,S乙2,则下列关系中完全正确的是()A甲=乙,S甲2S乙2B甲=乙,S甲2S乙2C甲乙,S甲2S乙2D甲乙,S甲2S乙28(2010北京)美术课上,老师要求同学们将如图所示的白纸只沿虚线剪开,用裁开的纸片和白纸上的阴影部份围成一个立体模型,然后放在桌面上,下面四个示意图中,只有一个符合上述要求,那么这个示意图是()ABCD二、填空题(共4小题,每小题4分,满分16分)9(2011綦江县)若有意义,则x的取值范围是_10(2010北京)分解因式:m34m=_11(2010北京)如图,AB为圆O的直径,弦CDAB,垂足为点E,连接OC,若OC=5,CD=8,则AE=_12(2010北京)右图为手的示意图,在各个手指间标记字母A、B、C、D请你按图中箭头所指方向(即ABCDCBABC的方式)从A开始数连续的正整数1,2,3,4,当数到12时,对应的字母是_;当字母C第201次出现时,恰好数到的数是_;当字母C第2n+1次出现时(n为正整数),恰好数到的数是_(用含n的代数式表示)三、解答题(共13小题,满分72分)13计算:14(2010北京)解分式方程:15(2010北京)已知:如图,点A、B、C、D在同一条直线上,EAAD,FDAD,AE=DF,AB=DC求证:ACE=DBF16(2010北京)已知关于x的一元二次方程x24x+m1=0有两个相等的实数根,求m的值及方程的根17(2010北京)列方程或方程组解应用题:2009年北京市生产运营用水和居民家庭用水的总和为5.8亿立方米,其中居民家庭用水比生产运营用水的3倍还多0.6亿立方米,问生产运营用水和居民家庭用水各多少亿立方米?18(2010北京)如图,直线y=2x+3与x轴交于点A,与y轴交于点B(1)求A、B两点的坐标;(2)过B点作直线BP与x轴交于点P,且使OP=2OA,求ABP的面积19(2010北京)已知:如图,在梯形ABCD中,ADBC,AB=DC=AD=2,BC=4求B的度数及AC的长20(2010北京)已知:如图,在ABC中,D是AB边上一点,圆O过D、B、C三点,DOC=2ACD=90(1)求证:直线AC是圆O的切线;(2)如果ACB=75,圆O的半径为2,求BD的长21(2010北京)根据北京市统计局的20062009年空气质量的相关数据,绘制统计图如下:(1)由统计图中的信息可知,北京全年市区空气质量达到二级和好于二级的天数与上一年相比,增加最多的是_年,增加了_天;(2)表1是根据中国环境发展报告(2010)公布的数据绘制的2009年十个城市供气质量达到二级和好于二级的天数占全年天数百分比的统计表,请将表1中的空缺部分补充完整(精确到1%)2009年十个城市空气质量达到二级和好于二级的天数占全年天数百分比统计表:3城市北京上海天津昆明杭州广州南京成都沈阳西宁百分比91%84%100%89%95%86%86%90%77%(3)根据表1中的数据将十个城市划分为三个组,百分比不低于95%的为A组,不低于85%且低于95%的为B组,低于85%的为C组按此标准,C组城市数量在这十个城市中所占的百分比为_%;请你补全右边的扇形统计图22(2010北京)阅读下列材料:小贝遇到一个有趣的问题:在矩形ABCD中,AD=8cm,AB=6cm现有一动点P按下列方式在矩形内运动:它从A点出发,沿着AB边夹角为45的方向作直线运动,每次碰到矩形的一边,就会改变运动方向,沿着与这条边夹角为45的方向作直线运动,并且它一直按照这种方式不停地运动,即当P点碰到BC边,沿着BC边夹角为45的方向作直线运动,当P点碰到CD边,再沿着与CD边夹角为45的方向作直线运动,如图1所示,问P点第一次与D点重合前与边相碰几次,P点第一次与D点重合时所经过的路径的总长是多少小贝的思考是这样开始的:如图2,将矩形ABCD沿直线CD折叠,得到矩形A1B1CD,由轴对称的知识,发现P2P3=P2E,P1A=P1E请你参考小贝的思路解决下列问题:(1)P点第一次与D点重合前与边相碰_次;P点从A点出发到第一次与D点重合时所经过的路径的总长是_cm;(2)近一步探究:改变矩形ABCD中AD、AB的长,且满足ADAB,动点P从A点出发,按照阅读材料中动点的运动方式,并满足前后连续两次与边相碰的位置在矩形ABCD相邻的两边上若P点第一次与B点重合前与边相碰7次,则AB:AD的值为_23(2010北京)已知反比例函数y=的图象经过点A(,1)(1)试确定此反比例函数的解析式;(2)点O是坐标原点,将线段OA绕O点顺时针旋转30得到线段OB判断点B是否在此反比例函数的图象上,并说明理由;(3)已知点P(m,m+6)也在此反比例函数的图象上(其中m0),过P点作x轴的垂线,交x轴于点M若线段PM上存在一点Q,使得OQM的面积是,设Q点的纵坐标为n,求n22n+9的值24(2010北京)在平面直角坐标系xOy中,抛物线y=x2+x+m23m+2与x轴的交点分别为原点O和点A,点B(2,n)在这条抛物线上(1)求点B的坐标;(2)点P在线段OA上,从O点出发向点运动,过P点作x轴的垂线,与直线OB交于点E延长PE到点D使得ED=PE以PD为斜边,在PD右侧作等腰直角三角形PCD(当P点运动时,C点、D点也随之运动)j当等腰直角三角形PCD的顶点C落在此抛物线上时,求OP的长;k若P点从O点出发向A点作匀速运动,速度为每秒1个单位,同时线段OA上另一点Q从A点出发向O点作匀速运动,速度为每秒2个单位(当Q点到达O点时停止运动,P点也同时停止运动)过Q点作x轴的垂线,与直线AB交于点F延长QF到点M,使得FM=QF,以QM为斜边,在QM的左侧作等腰直角三角形QMN(当Q点运动时,M点,N点也随之运动)若P点运动到t秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,求此刻t的值25(2010北京)问题:已知ABC中,BAC=2ACB,点D是ABC内的一点,且AD=CD,BD=BA探究DBC与ABC度数的比值请你完成下列探究过程:先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明(1)当BAC=90时,依问题中的条件补全右图;观察图形,AB与AC的数量关系为_;当推出DAC=15时,可进一步推出DBC的度数为_;可得到DBC与ABC度数的比值为_;(2)当BAC90时,请你画出图形,研究DBC与ABC度数的比值是否与(1)中的结论相同,写出你的猜想并加以证明2010年北京市中考数学试卷参考答案与试题解析一、选择题(共8小题,每小题4分,满分32分)1(2011孝感)2的倒数是()A2B2CD考点:倒数。分析:根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数解答:解:2()=1,2的倒数是故选D点评:主要考查倒数的概念及性质倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题2(2010北京)2010年6月3日,人类首次模拟火星载人航天飞行试验“火星500”正式启动包括中国志愿者王跃在内的6名志愿者踏上了为期12480小时的“火星之旅”将12 480用科学记数法表示应为()A12.48103B0.1248105C1.248104D1.248103考点:科学记数法表示较大的数。专题:应用题。分析:科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数解答:解:12 480用科学记数法表示应为1.248104故选C点评:此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值3(2010北京)如图,在ABC中,点D、E分AB、AC边上,DEBC,若AD:AB=3:4,AE=6,则AC等于()A3B4C6D8考点:平行线分线段成比例。专题:几何图形问题。分析:首先由DEBC可以得到AD:AB=AE:AC,而AD:AB=3:4,AE=6,由此即可求出AC解答:解:DEBC,ADEABC,AD:AB=AE:AC,而AD:AB=3:4,AE=6,3:4=6:AC,AC=8故选D点评:本题主要考查平行线分线段成比例定理,对应线段一定要找准确,有的同学因为没有找准对应关系,从而导致错选其他答案4(2010北京)菱形的两条对角线的长分别是6和8,则这个菱形的周长是()A24B20C10D5考点:菱形的性质;勾股定理。分析:菱形的边长和对角线的一半组成直角三角形,根据勾股定理求得其边长,从而求出菱形的周长即可解答:解:如图,AC=8,BD=6,OA=4,BO=3,AB=5,这个菱形的周长是20故选B点评:此题主要考查菱形的基本性质及勾股定理的运用5(2010北京)从:1、2、3、4、5、6、7、8、9、10这十个数中随机取出一个数,取出的数是3的倍数的概率是()ABCD考点:概率公式。分析:让是3的倍数的数的个数除以数的总个数即为所求的概率解答:解:1、2、3、4、5、6、7、8、9、10这十个数中,3的倍数的有3、6、9共3个数,取出的数是3的倍数的概率是:故选B点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=6(2010北京)将二次函数y=x22x+3化为y=(xh)2+k的形式,结果为()Ay=(x+1)2+4By=(x1)2+4Cy=(x+1)2+2Dy=(x1)2+2考点:二次函数的三种形式。分析:本题是将一般式化为顶点式,由于二次项系数是1,只需加上一次项系数的一半的平方来凑成完全平方式即可解答:解:y=x22x+3=x22x+11+3=(x1)2+2故选D点评:二次函数的解析式有三种形式:(1)一般式:y=ax2+bx+c(a0,a、b、c为常数);(2)顶点式:y=a(xh)2+k;(3)交点式(与x轴):y=a(xx1)(xx2)7(2010北京)10名同学分成甲、乙两队进行篮球比赛,它们的身高(单位:cm)如下表所示:队员1队员2队员3队员4队员5甲队177176175172175乙队170175173174183设两队队员身高的平均数依次为甲,乙,身高的方差依次为S甲2,S乙2,则下列关系中完全正确的是()A甲=乙,S甲2S乙2B甲=乙,S甲2S乙2C甲乙,S甲2S乙2D甲乙,S甲2S乙2考点:方差;算术平均数。专题:计算题;图表型。分析:先用平均数公式计算甲乙的平均数,再利用方差公式分别计算甲乙的方差,然后根据计算结果判断解答:解:甲=(177+176+175+172+175)=175,S甲2=(177175)2+(176175)2+(175175)2+(172175)2+(175175)2=2.8乙=(170+175+173+174+183)=175,S乙2=(170175)2+(175175)2+(173175)2+(174175)2+(183175)2=18.8故选B点评:考查了平均数和方差的计算计算时要认真仔细8(2010北京)美术课上,老师要求同学们将如图所示的白纸只沿虚线剪开,用裁开的纸片和白纸上的阴影部份围成一个立体模型,然后放在桌面上,下面四个示意图中,只有一个符合上述要求,那么这个示意图是()ABCD考点:展开图折叠成几何体。分析:动手操作看得到小正方体的阴影部分的具体部位即可解答:解:动手操作折叠成正方体的形状放置到白纸的阴影部分上,所得正方体中的阴影部分应紧靠白纸,故选B点评:本题考查学生的空间想象能力,也可动手操作得到答案二、填空题(共4小题,每小题4分,满分16分)9(2011綦江县)若有意义,则x的取值范围是x考点:二次根式有意义的条件。分析:根据二次根式的定义可知被开方数必须为非负数,列不等式求解解答:解:要是有意义,则2x10,解得x故答案为:x点评:本题主要考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义10(2010北京)分解因式:m34m=m(m2)(m+2)考点:提公因式法与公式法的综合运用。分析:当一个多项式有公因式,将其分解因式时应先提取公因式,再对余下的多项式利用平方差公式继续分解解答:解:m34m,=m(m24),=m(m2)(m+2)点评:本题考查提公因式法分解因式,利用平方差公式分解因式,熟记公式是解题的关键,要注意分解因式要彻底11(2010北京)如图,AB为圆O的直径,弦CDAB,垂足为点E,连接OC,若OC=5,CD=8,则AE=2考点:垂径定理;勾股定理。分析:根据垂径定理可以得到CE的长,在直角OCE中,根据勾股定理即可求得解答:解:AB为圆O的直径,弦CDAB,垂足为点ECE=CD=4在直角OCE中,OE=3则AE=OAOE=53=2点评:此题涉及圆中求半径的问题,此类在圆中涉及弦长、半径、圆心角的计算的问题,常把半弦长,半圆心角,圆心到弦距离转换到同一直角三角形中,然后通过直角三角形予以求解,常见辅助线是过圆心作弦的垂线12(2010北京)右图为手的示意图,在各个手指间标记字母A、B、C、D请你按图中箭头所指方向(即ABCDCBABC的方式)从A开始数连续的正整数1,2,3,4,当数到12时,对应的字母是B;当字母C第201次出现时,恰好数到的数是603;当字母C第2n+1次出现时(n为正整数),恰好数到的数是6n+3(用含n的代数式表示)考点:规律型:数字的变化类。分析:规律是:前六个字母为一组,后边不断重复,12除以6,由余数来判断是什么字母每组中C字母出现两次,字母C出现201次就是这组字母出现100次,再加3字母C出现2n+1次就是这组字母出现n次,再加3解答:解:通过对字母观察可知:前六个字母为一组,后边就是这组字母反复出现当数到12时因为12除6刚好余数为零,则表示这组字母刚好出现两次,所以最后一个字母应该是B当字母C第201次出现时,由于每组字母中C出现两次,则这组字母应该出现100次后还要加一次C字母出现,而第一个C字母在第三个出现,所以应该是1006+3=603当字母C第2n+1次出现时,则这组字母应该出现n次后还要加一次C字母出现,所以应该是n6+3=6n+3点评:本题是一道找规律的题目,这类题型在中考中经常出现对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的三、解答题(共13小题,满分72分)13计算:考点:特殊角的三角函数值;零指数幂;负整数指数幂。专题:计算题。分析:根据负指数幂、零指数幂、绝对值、特殊角的三角函数值进行化简,然后根据实数的运算法则求得计算结果解答:解:原式=点评:本题主要考查了负指数幂、零指数幂、绝对值、特殊角的三角函数值的性质及实数运算,难度适中14(2010北京)解分式方程:考点:解分式方程。专题:计算题。分析:观察方程可得最简公分母是:2(x2),两边同时乘最简公分母可把分式方程化为整式方程来解答解答:解:去分母,得32x=x2,整理,得3x=5,解得x=经检验,x=是原方程式的解所以原方程式的解是x=点评:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解(2)解分式方程一定注意要验根15(2010北京)已知:如图,点A、B、C、D在同一条直线上,EAAD,FDAD,AE=DF,AB=DC求证:ACE=DBF考点:全等三角形的判定与性质。专题:证明题。分析:因为EAAD,FDAD,AB=DC,AE=DF,所以EACFDB,则ACE=DBF解答:证明:AB=DC,BC=BC,AC=DBEAAD,FDAD,A=D=90又AE=DF,EACFDB(SAS),ACE=DBF点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL证明角、边相等常常运三角形全等来证明16(2010北京)已知关于x的一元二次方程x24x+m1=0有两个相等的实数根,求m的值及方程的根考点:根的判别式。分析:首先根据原方程根的情况,利用根的判别式求出m的值,即可确定原一元二次方程,进而可求出方程的根解答:解:由题意可知=0,即(4)24(m1)=0,解得m=5当m=5时,原方程化为x24x+4=0解得x1=x2=2所以原方程的根为x1=x2=2点评:总结:一元二次方程根的情况与判别式的关系:(1)0方程有两个不相等的实数根;(2)=0方程有两个相等的实数根;(3)0方程没有实数根17(2010北京)列方程或方程组解应用题:2009年北京市生产运营用水和居民家庭用水的总和为5.8亿立方米,其中居民家庭用水比生产运营用水的3倍还多0.6亿立方米,问生产运营用水和居民家庭用水各多少亿立方米?考点:一元一次方程的应用。专题:应用题。分析:等量关系为:居民家庭用水=生产运营用水的3倍+0.6解答:解:设生产运营用水x亿立方米,则居民家庭用水(5.8x)亿立方米依题意,得5.8x=3x+0.6,解得:x=1.3,5.8x=5.81.3=4.5答:生产运营用水1.3亿立方米,居民家庭用水4.5亿立方米点评:解题关键是弄清题意,找到合适的等量关系本题也可根据“生产运营用水和居民家庭用水的总和为5.8亿立方米”来列等量关系18(2010北京)如图,直线y=2x+3与x轴交于点A,与y轴交于点B(1)求A、B两点的坐标;(2)过B点作直线BP与x轴交于点P,且使OP=2OA,求ABP的面积考点:一次函数综合题。专题:综合题。分析:(1)由函数解析式y=2x+3,令y=0求得A点坐标,x=0求得B点坐标;(2)有两种情况,若BP与x轴正方向相交于P点,则AP=3OA;若BP与x轴负方向相交于P点,则AP=OA,由此求得ABP的面积解答:解:(1)令y=0,得x=,A点坐标为(,0),令x=0,得y=3,B点坐标为(0,3);(2)设P点坐标为(x,0),依题意,得x=3,P点坐标分别为P1(3,0)或P2(3,0)SABP1=(+3)3=,SABP2=(3)3=,ABP的面积为或点评:此题主要考查了函数图象中坐标的求法以及面积的求法19(2010北京)已知:如图,在梯形ABCD中,ADBC,AB=DC=AD=2,BC=4求B的度数及AC的长考点:梯形;解直角三角形。分析:解法一:分别作AFBC,DGBC,F、G是垂足,把梯形转换成矩形和两个直角三角形,首先利用梯形的性质和已知条件证明RtAFBRtDGC,然后在RtAFB中解直角三角形即可求出所求线段;解法二:过A点作AEDC交BC于点E,把梯形的问题转换成平行四边形和等边三角形,然后利用等边三角形的性质和三角函数的定义即可求出所求线段解答:解:解法一:分别作AFBC,DGBC,F、G是垂足,AFB=DGC=90,ADBC,四边形AFGD是矩形AF=DG,AB=DC,RtAFBRtDGCBF=CG,AD=2,BC=4,BF=1,在RtAFB中,cosB=,B=60,BF=1,AF=,FC=3,由勾股定理,得AC=2,B=60,AC=2解法二:过A点作AEDC交BC于点E,ADBC,四边形AECD是平行四边形AD=EC,AE=DC,AB=DC=AD=2,BC=4,AE=BE=EC=AB,BAC是直角三角形,ABE是等边三角形,BAC=90,B=60在RtABC中,AC=ABtanB=ABtan60=2,B=60,AC=2点评:此题主要考查了梯形的常用辅助线:作梯形的高和平移腰,把梯形的问题转换成直角三角形或等边三角形的问题,然后利用解直角三角形的知识和等边三角形的性质解决问题20(2010北京)已知:如图,在ABC中,D是AB边上一点,圆O过D、B、C三点,DOC=2ACD=90(1)求证:直线AC是圆O的切线;(2)如果ACB=75,圆O的半径为2,求BD的长考点:切线的判定。专题:几何综合题。分析:(1)证明OCAC即可根据DOC是等腰直角三角形可得DCO=45又ACD=45,所以ACO=90,得证;(2)如果ACB=75,则ACD=30;又B=O=45,解斜三角形BCD求解所以作DEBC,把问题转化到解直角三角形求解先求CD,再求DE,最后求BD得解解答:(1)证明:OD=OC,DOC=90,ODC=OCD=45DOC=2ACD=90,ACD=45ACD+OCD=OCA=90点C在圆O上,直线AC是圆O的切线(2)解:方法1:OD=OC=2,DOC=90,CD=2ACB=75,ACD=45,BCD=30,作DEBC于点E,则DEC=90,DE=DCsin30=B=45,DB=2方法2:连接BOACB=75,ACD=45,BCD=30,BOD=60OD=OB=2BOD是等边三角形BD=OD=2点评:此题考查了切线的判定方法和解直角三角形,内容单一,难度不大注意:解斜三角形通常通过作垂线把问题转化为解直角三角形求解21(2010北京)根据北京市统计局的20062009年空气质量的相关数据,绘制统计图如下:(1)由统计图中的信息可知,北京全年市区空气质量达到二级和好于二级的天数与上一年相比,增加最多的是2008年,增加了28天;(2)表1是根据中国环境发展报告(2010)公布的数据绘制的2009年十个城市供气质量达到二级和好于二级的天数占全年天数百分比的统计表,请将表1中的空缺部分补充完整(精确到1%)2009年十个城市空气质量达到二级和好于二级的天数占全年天数百分比统计表:3城市北京上海天津昆明杭州广州南京成都沈阳西宁百分比91%84%100%89%95%86%86%90%77%(3)根据表1中的数据将十个城市划分为三个组,百分比不低于95%的为A组,不低于85%且低于95%的为B组,低于85%的为C组按此标准,C组城市数量在这十个城市中所占的百分比为30%;请你补全右边的扇形统计图考点:扇形统计图;折线统计图。专题:图表型。分析:(1)此题求的是增加最多的年数,结合折线统计图,即可找到变化趋势最明显的一年;(2)根据折线统计图得2009年北京空气质量达到二级和好于二级的天数是285天,进一步求得所占的百分比即可;(3)根据统计表,得C组的有3个城市,占310=30%解答:解:(1)根据折线统计图,得增加最多的一年是2008年;274246=28(天);(2)28536578%;(3)310=30%点评:此题综合考查了折线统计图和扇形统计图,能够根据要求熟练求得各部分所占的百分比22(2010北京)阅读下列材料:小贝遇到一个有趣的问题:在矩形ABCD中,AD=8cm,AB=6cm现有一动点P按下列方式在矩形内运动:它从A点出发,沿着AB边夹角为45的方向作直线运动,每次碰到矩形的一边,就会改变运动方向,沿着与这条边夹角为45的方向作直线运动,并且它一直按照这种方式不停地运动,即当P点碰到BC边,沿着BC边夹角为45的方向作直线运动,当P点碰到CD边,再沿着与CD边夹角为45的方向作直线运动,如图1所示,问P点第一次与D点重合前与边相碰几次,P点第一次与D点重合时所经过的路径的总长是多少小贝的思考是这样开始的:如图2,将矩形ABCD沿直线CD折叠,得到矩形A1B1CD,由轴对称的知识,发现P2P3=P2E,P1A=P1E请你参考小贝的思路解决下列问题:(1)P点第一次与D点重合前与边相碰5次;P点从A点出发到第一次与D点重合时所经过的路径的总长是24cm;(2)近一步探究:改变矩形ABCD中AD、AB的长,且满足ADAB,动点P从A点出发,按照阅读材料中动点的运动方式,并满足前后连续两次与边相碰的位置在矩形ABCD相邻的两边上若P点第一次与B点重合前与边相碰7次,则AB:AD的值为4:5考点:轴对称的性质;矩形的性质。专题:探究型。分析:(1)此题可通过动手画图来得到所求的结论,需要掌握的规律是相邻的两个P点与矩形顶点所构成的都是等腰直角三角形,如:ABP1、P1P2C、P2DP3等由图分析可知P点第一次与D点重合前与边相碰5次,所经过的路径的长=4AB=24(2)根据题(1)的规律,可设AB=x,BC=y,那么根据规律可知:AB=BP1=x,CP1=CP2=yx,DP2=DP3=x(yx)=2xy,AP3=AP4=y(2xy)=2y2x,依次类推,AP7=AB=4y4x;由于AB=x,则4y4x=x,即4y=5x,故x:y=4:5;因此当P点第一次与B点重合前相碰7次,那么AB:AD=4:5解答:解:(1)5;(2)24;解题思路示意图:(2)AB:AD=4:5点评:解决此题的关键在与掌握P点的运动规律,能够理解每两个相邻P点与矩形顶点所构成的三角形是等腰直角三角形,是解答此题的关键23(2010北京)已知反比例函数y=的图象经过点A(,1)(1)试确定此反比例函数的解析式;(2)点O是坐标原点,将线段OA绕O点顺时针旋转30得到线段OB判断点B是否在此反比例函数的图象上,并说明理由;(3)已知点P(m,m+6)也在此反比例函数的图象上(其中m0),过P点作x轴的垂线,交x轴于点M若线段PM上存在一点Q,使得OQM的面积是,设Q点的纵坐标为n,求n22n+9的值考点:反比例函数综合题;待定系数法求反比例函数解析式;旋转的性质。专题:综合题。分析:(1)由于反比例函数y=的图象经过点A(,1),运用待定系数法即可求出此反比例函数的解析式;(2)首先由点A的坐标,可求出OA的长度,AOC的大小,然后根据旋转的性质得出AOB=30,OB=OA,再求出点B的坐标,进而判断点B是否在此反比例函数的图象上;(3)把点P(m,m+6)代入反比例函数的解析式,得到关于m的一元二次方程;根据题意,可得Q点的坐标为(m,n),再由OQM的面积是,根据三角形的面积公式及m0,得出mn的值,最后将所求的代数式变形,把mn的值代入,即可求出n22n+9的值解答:解:(1)由题意得1=,解得k=,反比例函数的解析式为y=;(2)过点A作x轴的垂线交x轴于点C在RtAOC中,OC=,AC=1,OA=2,AOC=30,将线段OA绕O点顺时针旋转30得到线段OB,AOB=30,OB=OA=2,BOC=60过点B作x轴的垂线交x轴于点D在RtBOD中,BD=OBsinBOD=,OD=OB=1,B点坐标为(1,),将x=1代入y=中,得y=,点B(1,)在反比例函数y=的图象上(3)由y=得xy=,点P(m,m+6)在反比例函数y=的图象上,其中m0,m(m+6)=,m2+2m+1=0,PQx轴,Q点的坐标为(m,n)OQM的面积是,OMQM=,m0,mn=1,m2n2+2mn2+n2=0,n22n=1,n22n+9=8点评:本题综合考查了运用待定系数法求反比例函数的解析式,旋转的性质,三角函数的定义,求代数式的值等知识,尤其是在最后一问中,没有必要求出n的具体值,而是将mn=1作为一个整体代入,有一定的技巧性,使计算简便24(2010北京)在平面直角坐标系xOy中,抛物线y=x2+x+m23m+2与x轴的交点分别为原点O和点A,点B(2,n)在这条抛物线上(1)求点B的坐标;(2)点P在线段OA上,从O点出发向点运动,过P点作x轴的垂线,与直线OB交于点E延长PE到点D使得ED=PE以PD为斜边,在PD右侧作等腰直角三角形PCD(当P点运动时,C点、D点也随之运动)j当等腰直角三角形PCD的顶点C落在此抛物线上时,求OP的长;k若P点从O点出发向A点作匀速运动,速度为每秒1个单位,同时线段OA上另一点Q从A点出发向O点作匀速运动,速度为每秒2个单位(当Q点到达O点时停止运动,P点也同时停止运动)过Q点作x轴的垂线,与直线AB交于点F延长QF到点M,使得FM=QF,以QM为斜边,在QM的左侧作等腰直角三角形QMN(当Q点运动时,M点,N点也随之运动)若P点运动到t秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,求此刻t的值考点:二次函数综合题。专题:综合题。分析:(1)由抛物线y=x2+x+m23m+2与x轴的交点分别为原点O,令x=0,y=0,解得m的值,点B(2,n)在这条抛物线上,把该点代入抛物线方程,解得n(2)设直线OB的解析式为y=k1x,求得直线OB的解析式为y=2x,由A点是抛物线与x轴的一个交点,可求得A点的坐标,设P点的坐标为(a,0),根据题意作等腰直角三角形PCD,如图1可求得点C的坐标,进而求出OP的值,依题意作等腰直角三角形QMN,设直线AB的解析式为y=k2x+b,求出直线AB的解析式,当P点运动到t秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,有以下三种情况,解出各种情况下的时间t解答:解:(1)抛物线y=x2+x+m23m+2经过原点,m23m+2=0,解得m1=1,m2=2,由题意知m1,m=2,抛物线的解析式为y=x2+x,点B(2,n)在抛物线y=x2+x上,n=4,B点的坐标为(2,4)(2)设直线OB的解析式为y=k1x,求得直线OB的解析式为y=2x,A点是抛物线与x轴的一个交点,可求得A点的坐标为(10,0),设P点的坐标为(a,0),则E点的坐标为(a,2a),根据题意作等腰直角三角形PCD,如图1,可求得点C的坐标为(3a,2a),由C点在抛物线上,得:2a=(3a)2+3a,即a2a=0,解得a1=,a2=0(舍去),OP=依题意作等腰直角三角形QMN,设直线AB的解析式为y=k2x+b,由点A(10,0),点B(2,4),求得直线AB的解析式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论