浅谈初中数学几何证明的三种思维.doc_第1页
浅谈初中数学几何证明的三种思维.doc_第2页
浅谈初中数学几何证明的三种思维.doc_第3页
浅谈初中数学几何证明的三种思维.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浅谈初中数学几何证明的三种思维 摘 要:几何证明题是初中数学非常重要的一项内容,学好几何证明题对提高数学成绩有重要作用。做好几何证明题,需要掌握多种解题的思维方法,只有灵活运用这些思维方式才能快速正确解题。主要对正向思维、逆向思维、正逆结合三种思维方式在几何证明题中的应用进行探讨。 关键词:初中数学;几何证明;思维方式 几何证明题在初中数学学习中占有重要位置,是初中数学学习的一项重要内容,几何题的证明一直是困扰学生的一个难题。要学好几何证明题,需要开阔学生的思维方式,灵活运用多种思维方式和解题方法,就能学好几何证明题。笔者结合教学初中实践对几何证明题的三种常用思维方式进行探讨。 一、运用正向思维进行证明 运用正向思维方式进行几何题的证明是最常用的一种方法,特别是对于一般的题目,运用正向思维就能容易解决,只有根据题目给出的已知条件,向要得到的结果方向逐步证明推理就能把题目证明好。 例1.证明:等腰ABC两底的角平分线BD=CE。 解题分析:本题用正向思维方式进行证明,只要已知条件,寻找三个条件来证明BDC与CEB全等,就能证明两条角平分线相等。 证明过程:根据图1和题目已知条件可得出AC=AB 根据等边对等角可知:ACB=ABC,CE与BD是角平分线,根据其定义可得出:BEC=ECA+A,CDB=DBA+A,根据角平分线的性质可得ECB=DBC可得出BEC=CDB,在BCD和CBE中,根据三个条件:BC=BC,BEC=CDB,ECB=DBC,根据角边角定理可得出:BECCDB,可得出CE=BD,此题得证。 二、运用逆向思维进行证明 证明几何题还可用逆向思维方式进行证明,通过运用多种方式和方法进行几何题的证明,能培养学生的思维发散能力和创新能力。 例2.学习勾股定理时曾有这样一道几何证明题,现用逆向思维方式证明。证明:+=(a、b为两条直角边,h为斜边c上的高) 解题分析:在本题的证明中,运用逆向思维方式,从结论开始着手进行推理证明,能减少一些没有必要的运算过程,使证明过程更方便简单易行。 证明过程:将要证明的等式左边分工进行合并:+=因为在直角三角形ABC中,有a2+b2=c2上式可变为=,两边交叉相乘得:a2?b2=c2?h2,式子变形(ab)2=(ch)2,a,b,c,h均为正数,可得ab=ch,根据三角形面积公式可知此式成立,从而可证明结果成立:+= 三、运用综合方式进行证明 在证明几何题目时,有时会遇到一些题目,从已知条件运用正向思维进行证明和从结论运用逆向思维进行证明都不容易找到问题的突破口。遇到这种情况就要对已知条件进行分析,用正向思维进行证明,也可以认真分析证明结论,运用逆向思维进行证明,也可以同时运用两种思维方式进行思考,从而找到解决问题的突破口。如,题目给出三角形某个边的中点,如果做辅助线,就要考虑中线或中点倍长线。如果是在梯形中给出中点,就要考虑其高线、补形结合、对角平移等方法和条件的利用。从正反两个方面综合考虑,往往会使题目容易证明。 例3.(如图2)已知梯形ABCD,其中AEDC,ABCD,边AC的长度是20,边BD长是15,边AE的长是12,求梯形ABCD的面积? 解题过程:过A点作一条辅助线AM,使AMBD,AM线交于CD延长线上的M点,因此,就可得到平行四边形ABDM,根据这个平行四边形可知:AM=BD,SAMD =SABD,由此可知SABD=SABC,梯形ABCD面积就等于AMC的面积。在AME中可求得,ME=9,在AEC中,EC=16,因为梯形ABCD面积等于AMC的面积:可得SAMC=(9+16)12=150 四、运用几何证明题培养学生能力 随着素质教育和新课标的实施,要求教师在初中数学教学中注重发展学生的思维能力。通过运用多种思维方式,从不同角度对几何题目进行证明,能扩展学生的思路。学生通过对几何题目进行观察、分析、归纳等步骤,来感受几何证明带来的挑战和几何题目证明过程的严谨性、条理性、确定性,对培养学生的思维创新能力非常有益。本文中三?N思维方式在几何证明中使用较多,也是最有效的方法,教师在教学中应指导学生注重对这几种思维方式的运用,以提高学生的数学学习

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论