331第5课时几何概型(1).doc_第1页
331第5课时几何概型(1).doc_第2页
331第5课时几何概型(1).doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

普通高中课程标准实验教科书数学必修三苏教版3.3 第5课时 几何概型(1)教学目标()了解几何概型的概念及基本特点;()熟练掌握几何概型中概率的计算公式;()会进行简单的几何概率计算教学重点,难点()掌握几何概型中概率的计算公式;()会进行简单的几何概率计算教学过程一问题情境情境:试验取一根长度为的绳子,拉直后在任意位置剪断试验射箭比赛的箭靶涂有五个彩色得分环从外向内为白色,黑色,蓝色,红色,靶心是金色金色靶心叫黄心奥运会的比赛靶面直径为,靶心直径为运动员在外射箭假设射箭都能射中靶面内任何一点都是等可能的 问题:对于试验剪得两段的长都不小于的概率有多大?试验射中黄心的概率为多少?二学生活动经分析,第一个试验,从每一个位置剪断都是一个基本事件,剪断位置可以是长度为的绳子上的任意一点第二个试验中,射中靶面上每一点都是一个基本事件,这一点可以是靶面直径为的大圆内的任意一点在这两个问题中,基本事件有无限多个,虽然类似于古典概型的等可能性,但是显然不能用古典概型的方法求解考虑第一个问题,如图,记剪得两段的长都不小于为事件把绳子三等分,于是当剪断位置处在中间一段上时,事件发生由于中间一段的长度等于绳长的,于是事件发生的概率图第二个问题,如图,记射中黄心为事件,由于中靶心随机地落在面积为的大圆内,而当中靶点落在面积为的黄心内时,事件发生,于是事件发生的概率图三建构数学几何概型的概念:对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样;而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点这里的区域可以是线段,平面图形,立体图形等用这种方法处理随机试验,称为几何概型几何概型的基本特点:()试验中所有可能出现的结果(基本事件)有无限多个;()每个基本事件出现的可能性相等几何概型的概率:一般地,在几何区域中随机地取一点,记事件该点落在其内部一个区域内为事件,则事件发生的概率说明:()的测度不为;()其中测度的意义依确定,当分别是线段,平面图形,立体图形时,相应的测度分别是长度,面积和体积()区域为开区域;()区域内随机取点是指:该点落在区域内任何一处都是等可能的,落在任何部分的可能性大小只与该部分的测度成正比而与其形状位置无关四数学运用例题例取一个边长为的正方形及其内切圆(如图),随机向正方形内丢一粒豆子,求豆子落入圆内的概率(测度为面积)分析:由于是随机丢豆子,故可认为豆子落入正方形内任一点的机会都是均等的,于是豆子落入圆中的概率应等于圆面积与正方形面积的比解:记豆子落入圆内为事件,则答:豆子落入圆内的概率为图例在高产小麦种子中混入了一粒带锈病的种子,从中随机取出,含有麦锈病种子的概率是多少?(测度为体积)分析:病种子在这种子中的分布可以看做是随机的,取得的种子可视作区域,所有种子可视为区域解:取出麦种,其中含有病种子这一事件记为,则答:含有麦锈病种子的概率为例在等腰直角三角形中,在斜边上任取一点,求小于的概率(测度为长度)分析:点随机地落在线段上,故线段为区域当点位于图中线段内时,故线段即为区域解:在上截取于是答:小于的概率为图练习课本第页

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论