



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第3讲 圆锥曲线的综合应用限时60分钟满分60分解答题(本大题共5小题,每小题12分,共60分)1已知椭圆c:1(ab0)经过点m(2,1),且离心率e.(1)求椭圆c的方程;(2)设a,b分别是椭圆c的上顶点、右顶点,点p是椭圆c在第一象限内的一点,直线ap,bp分别交x轴,y轴于点m,n,求四边形abmn面积的最小值解析:本题主要考查椭圆的标准方程、椭圆的基本性质以及直线方程,考查考生分析问题、解决问题的能力,考查的核心素养是数学运算(1)由离心率及c2a2b2得a,b的关系,再把已知点代入即可求出标准方程;(2)设出点p的坐标,得到直线ap,bp的方程,从而表示出点m,n的坐标,进而得到|an|bm|,最后利用s四边形abmnsomnsoab及基本不等式求面积的最小值(1)由椭圆的离心率为得,又c2a2b2,a2b.又椭圆c经过点(2,1),1,解得b22,椭圆c的方程为1.(2)由(1)可知,a(0,),b(2,0),设p(x0,y0)(0x02,0y0),则直线ap:yx,从而m.直线bp:y(x2),从而n.1,|an|bm|8.s四边形abmnsomnsoab(|om|on|oa|ob|)(|bm|2|an|8)(|bm|2|an|)44244(o为坐标原点),当且仅当|bm|4,|an|2时取得最小值2已知椭圆c:1(ab0)的离心率为,上顶点m到直线xy40的距离为3.(1)求椭圆c的方程;(2)设直线l过点(4,2),且与椭圆c相交于a,b两点,l不经过点m,证明:直线ma的斜率与直线mb的斜率之和为定值解:本题主要考查椭圆与直线的交汇,考查考生的数形结合能力、推理论证能力以及运算求解能力,考查的核心素养是直观想象、逻辑推理、数学运算(1)由题意可得,解得,所以椭圆c的方程为1.(2)易知直线l的斜率恒小于0,设直线l的方程为y2k(x4),k0且k1,a(x1,y1),b(x2,y2),联立得,得(14k2)x216k(2k1)x64k(k1)0,则x1x2,x1x2,因为kmakmb,所以kmakmb2k(4k4)2k4(k1)2k(2k1)1(为定值)3(2019淮南三模)已知椭圆c:1(ab0)的离心率为,直线4x3y50与以坐标原点为圆心,椭圆的短半轴长为半径的圆相切(1)求椭圆c的标准方程;(2)若a为椭圆c的下顶点,m,n为椭圆c上异于a的两点,直线am与an的斜率之积为1.求证:直线mn恒过定点,并求出该定点的坐标;若o为坐标原点,求的取值范围解析:(1)由题意可得离心率e,又直线4x3y50与圆x2y2b2相切,所以b1,结合a2b2c2,解得a,所以椭圆c的标准方程为x21.(2)设m(x1,y1),n(x2,y2),由题意知a(0,),又直线am与an的斜率之积为1,所以1,即有x1x2y1y2(y1y2)3,由题意可知直线mn的斜率存在且不为0,设直线mn:ykxt(k0),代入椭圆方程,消去y可得(3k2)x22ktxt230,所以x1x2,x1x2,y1y2k(x1x2)2t2t,y1y2k2x1x2kt(x1x2)t2k2ktt2,所以3,化简得t23t60,解得t2(舍去),则直线mn的方程为ykx2,即直线mn恒过定点,该定点的坐标为(0,2)由可得x1x2y1y2,由(3k2)x22ktxt230,可得4k2t24(t23)(3k2)48k236(3k2)0,解得k29.令3k2m,则m12,且k2m3,所以3,由m12,可得33.则的取值范围是.4(2019浙江卷)如图,已知点f(1,0)为抛物线y22px(p0)的焦点过点f的直线交抛物线于a,b两点,点c在抛物线上,使得abc的重心g在x轴上,直线ac交x轴于点q,且q在点f的右侧记afg,cqg的面积分别为s1,s2.(1)求p的值及抛物线的准线方程;(2)求的最小值及此时点g的坐标解:(1)由题意得1,即p2.所以,抛物线的准线方程为x1.(2)设a(xa,ya),b(xb,yb),c(xc,yc),重心g(xg,yg)令ya2t,t0,则xat2.由于直线ab过f,故直线ab的方程为xy1,代入y24x,得y2y40,故2tyb4,即yb,所以b.又由于xg(xaxbxc),yg(yaybyc)及重心g在x轴上,故2tyc0,得c,g.所以,直线ac的方程为y2t2t(xt2),得q(t21,0)由于q在焦点f的右侧,故t22.从而2.令mt22,则m0,2221.当m时,取得最小值1,此时g(2,0)5(2019北京卷)已知拋物线c:x22py经过点(2,1)(1)求拋物线c的方程及其准线方程;(2)设o为原点,过拋物线c的焦点作斜率不为0的直线l交拋物线c于两点m,n,直线y1分别交直线om,on于点a和点b.求证:以ab为直径的圆经过y轴上的两个定点解析:本题主要考查抛物线方程的求解与准线方程的确定,直线与抛物线的位置关系,圆的方程的求解及其应用等知识,意在考查学生的转化能力和计算求解能力(1)将点(2,1)代入抛物线方程:222p(1)可得:p2,故抛物线方程为:x24y,其准线方程为:y1.(2)很明显直线l的斜率存在,焦点坐标为(0,1),设直线方程为ykx1,与抛物线方程x24y联立可得:x24kx40.故:x1x24k,x1x24.设m,n,则kom,kon,直线om的方程为yx,与y1联立可得:a,同理可得b,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年台州温岭市第一人民医院招聘医学卫生类高层次人才9人考前自测高频考点模拟试题附答案详解(完整版)
- 2025昆明市第二人民医院融城老年病医院(5人)考前自测高频考点模拟试题有答案详解
- 2025年陕西邮电职业技术学院招聘(4人)考前自测高频考点模拟试题及答案详解(夺冠)
- 2025福建漳州边检站招聘警务辅助人员6人考前自测高频考点模拟试题及1套完整答案详解
- 2025年河南中医药大学第一附属医院公开招聘博士研究生131名模拟试卷附答案详解(考试直接用)
- 2025年郑州空中丝路文化传媒有限公司社会公开招聘6人考前自测高频考点模拟试题及参考答案详解
- 2025年春季中国邮政储蓄银行湖南省分行校园招聘模拟试卷及答案详解(历年真题)
- 2025广东肇庆市人力资源和社会保障局选聘法律顾问考前自测高频考点模拟试题及答案详解(新)
- 2025甘肃天水市武山县人力资源和社会保障局招聘城镇公益性岗位人员26人考前自测高频考点模拟试题及完整答案详解1套
- 2025贵州贵阳市某单位派遣制员工考前自测高频考点模拟试题(含答案详解)
- 国开2025年《行政领导学》形考作业1-4答案
- 中铝中州矿业有限公司禹州市方山铝土矿矿山地质环境保护和土地复垦方案
- 中铝中州矿业有限公司禹州市浅井铝土矿矿山地质环境保护和土地复垦方案
- 天津大学毕业论文答辩PPT模板
- 小学五六年级青春期女生健康心理讲座PPT
- 顶管沉井专项施工方案
- GA 1167-2014探火管式灭火装置
- 2022年国家电网有限公司特高压建设分公司校园招聘笔试试题及答案解析
- 文物保护施工方案
- 建筑施工现场消防专题培训课件
- 高中通用技术(相框)设计方案
评论
0/150
提交评论