数学北师大版七年级下册余角与补角.docx_第1页
数学北师大版七年级下册余角与补角.docx_第2页
数学北师大版七年级下册余角与补角.docx_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

余角与补角一、教学目标1.(1)余角、补角及对顶角的定义.(2.)余角、补角及对顶角的性质.2.经历观察、操作、推理、交流等过程,进一步发展空间观念、推理能力和有条理表达的能力.3.在具体情境中了解补角、余角、对顶角,知道等角的余角相等、等角的补角相等、对顶角相等,并能解决一些实际问题.4、通过在具体情境下的讨论,让学生理解基础知识的同时,提高他们理论联系实际的观念.二、教学重难点(一)教学重点1.互为余角、互为补角的定义及其性质.2.对顶角的定义及性质.(二)教学难点 互为余角、互为补角、对顶角的定义的理解.四、教学过程.创设现实情景,引入新课提问:在上册第四章“平面图形及其位置关系”中,我们学习了“平行”与“垂直”,大家想一想:什么是平行线?在同一平面内,不相交的两条直线叫做平行线.讲授新课图21如图,CD与EF垂直,ADC与1有什么关系?看:1+ADC=90,我们就可以称1与ADC是互为余角.再看:1+BDC=90,我们也可以称1与BDC是互为余角.由此,我们得到了一个新的概念:互为余角.即:如果两个角的和是直角,那么称这两个角互为余角,也就是说其中一个角是另一个角的余角.只要有BDC+1=90,就可知道1与BDC互为余角,反过来知道1与BDC是互为余角,就一定知道1与BDC的和为直角.再之:1与BDC是互为余角就是说:1是BDC的余角,BDC也是1的余角.两个角的和是直角,则这两个角是互为余角.刚才我们还讨论了:1+ADF=180,EDB+1=180.那么这样的两个角又叫什么呢?这就是我们要学习的另一个概念:互为补角.即:如果两个角的和是平角,那么称这两个角互为补角.在下图中,CD与EF垂直,1=2.(1)哪些角互为余角?哪些角互为补角?(2)ADC与BDC有什么关系?为什么?(3)ADF与BDE有什么关系?为什么?图22(同学们分组讨论,得结论)因此得出结论:同角或等角的余角相等. 同角或等角的补角相等.如果将剪刀的图形简单表示为下图,请问:1与2的位置有什么关系?它们的大小有什么关系?为什么?图23图中的1与2有公共的顶点O,且角的两边互为反向延长线.1与2相等,因为1是BOC的补角,2也是BOC的补角.由同角的补角相等,可得1与2相等.像这样,直线AB与直线CD相交于点O,1与2有公共顶点,它们的两边互为反向延长线,这样的两个角叫对顶角.如图中的AOD与BOC也是对顶角.对顶角有什么性质?对顶角相等.课堂练习.课时小结互为余角:如果两个角的和是直角,则这两个角互为余角.互为补角:如果两个角的和是平角,则这两个角互为补角.对顶角:像这样直线AB与直线CD相交于O,1与2有公共顶点,它们的两边互为反向延长线,这样的两个角叫

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论