甘肃省武威第六中学2020届高三数学上学期第五次过关考试试题 理(含解析).doc_第1页
甘肃省武威第六中学2020届高三数学上学期第五次过关考试试题 理(含解析).doc_第2页
甘肃省武威第六中学2020届高三数学上学期第五次过关考试试题 理(含解析).doc_第3页
甘肃省武威第六中学2020届高三数学上学期第五次过关考试试题 理(含解析).doc_第4页
甘肃省武威第六中学2020届高三数学上学期第五次过关考试试题 理(含解析).doc_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

武威六中2020届高三一轮复习过关考试(五)数学(理)一、选择题:本大题共12个小题,在每小题给出的四个选项中,只有一项是符合题目要求的1.已知全集,函数的定义域为,集合,则下列结论正确的是a. b. c. d. 【答案】a【解析】【分析】求函数定义域得集合m,n后,再判断【详解】由题意,故选a【点睛】本题考查集合的运算,解题关键是确定集合中的元素确定集合的元素时要注意代表元形式,集合是函数的定义域,还是函数的值域,是不等式的解集还是曲线上的点集,都由代表元决定2.下面关于复数的四个命题:的共轭复数在复平面内对应的点的坐标为的虚部为-1其中的真命题是( )a. b. c. d. 【答案】c【解析】由题意可得:,则:,命题假命题;,其在复平面内对应的点的坐标为命题为真命题;的虚部为,命题为假命题;,命题为真命题;综上可得:真命题是.本题选择c选项.3.下列有关命题的说法正确的是( )a. 若“”为假命题,则均为假命题b. “”是“”的必要不充分条件c. 命题“若,则”的逆否命题为真命题d. 命题“,使得”的否定是:“,均有”【答案】c【解析】【分析】对每一个命题逐一判断得解.【详解】a. 若为假命题,则中至少有一个假命题,所以该选项是错误的;b. 是的充分不必要条件,因为由得到“x=-1或x=6”,所以该选项是错误的;c. 命题若则 的逆否命题为真命题,因为原命题是真命题,而原命题的真假性和其逆否命题的真假是一致的,所以该选项是正确的;d. 命题使得的否定是:均有,所以该选项是错误的.故答案为c【点睛】本题主要考查复合命题的真假和充要条件的判断,考查逆否命题及其真假,考查特称命题的否定,意在考查学生对这些知识的掌握水平和分析推理能力.4.设,则( )a. b. c. d. 【答案】d【解析】【分析】利用函数的单调性,并结合取中间值法即可判断大小.【详解】由于,则,即.故选d.【点睛】本题主要考查对数与对数函数和指数与指数函数,利用函数的单调性比较大小是常用手段,属基础题.5.空间中有不重合的平面,和直线,则下列四个命题中正确的有( ):若且,则;:若且,则;:若且,则;:若,且,则.a. ,b. ,c. ,d. ,【答案】d【解析】对于,得出或与相交,故错误;对于,得出或相交或异面,故错误;对于,得出,故正确;对于,得出,故正确,选d.点睛:本题主要考查立体几何中的平行、垂直问题,属于基础题,对于线面、面面之间的平行或垂直关系,要掌握,才能做好这道题6.已知等比数列中,有,数列是等差数列,其前项和为,且,则( )a. 26b. 52c. 78d. 104【答案】b【解析】【分析】设等比数列的公比为q,利用等比性质可得,即,再结合,即可得到结果.【详解】设等比数列的公比为q,0,解得4,数列是等差数列,且故选b【点睛】本题考查了等比数列与等差数列的通项公式及其性质,考查了推理能力与计算能力,属于中档题7.已知四棱锥的底面是正方形且侧棱长与底面边长都相等,e是sb的中点,则ae,sd所成的角的余弦值为( )a. b. c. d. 【答案】c【解析】【分析】由四棱锥的底面是正方形且侧棱长与底面边长都相等,可推出四棱锥为正四棱锥,可以建立空间坐标系用向量的方法求解.【详解】设点为底面正方形的中心,连接,由四棱锥的底面是正方形且侧棱长与底面边长都相等,可得,则,同理可得,所以平面,即四棱锥为正四棱锥.以点为原点,的中垂线为轴,的中垂线为轴,为轴建立空间坐标系,根据条件,设棱长为2,如图,则 ,则,所以,,所以,所以ae,sd所成的角的余弦值为故选:c【点睛】本题考查异面直线所成角的求法,本题还可以用定义法求解,是基础题.8.已知函数若函数存在零点,则实数a的取值范围是( )a. b. c. d. 【答案】b【解析】【分析】分析函数f(x)解析式可知函数存在唯一零点x=0,则只需,从而得到a的范围.【详解】指数函数,没有零点,有唯一的零点,所以若函数存在零点,须有零点,即,则,故选b.【点睛】利用函数零点的情况求参数值或取值范围的方法(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数的范围; (2)分离参数法:先将参数分离,转化成求函数的值域(最值)问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.9.如右图所示的图象对应的函数解析式可能是( )a. b. c. d. 【答案】a【解析】【分析】根据图像判断函数的定义域可排除b,c选项,对于选项d分析函数值的正负可得出错误,对选项a可通过求导,求出单调区间,极值,函数值的正负,可判断正确.【详解】选项a:,令,函数的单调递增区间是,单调递减区间是,函数的极大值点为,极小值点为,函数的零点为,故选项a满足题意;选项b:函数定义域为,不合题意;选项c:函数的定义域为,不合题意;选项d:当,不合题意.故选:a【点睛】本题考查了函数的图像和性质的应用问题,解题时要注意分析每个函数的定义域与值域的图像特征,是综合性题目.10.已知函数f(x)a cos(x)(a0,0)的部分图象如图所示,下面结论错误的是()a. 函数f(x)的最小正周期为b. 函数f(x)的图象可由g(x)acos x的图象向右平移个单位长度得到c. 函数f(x)的图象关于直线x对称d. 函数f(x)在区间上单调递增【答案】d【解析】由题意可知,此函数的周期t=2(),解得:=3,可得:f(x)=acos(3x+)又由题图可知f()=acos(3+)=acos()=0,利用五点作图法可得:=,解得:=,f(x)=acos(3x+)令3x+=k,kz,可解得函数的对称轴方程为:x=,kz,令2k3x+2k,kz,可解得:kxk,kz,故函数的单调递增区间为:k,k,kz对于a,函数f(x)最小周期为,故a正确;对于b,因为g(x)=acos3x的图象向右平移个单位得到y=acos3(x)=acos(3x)=acos(3x)=acos(3x+)=f(x),故b正确;对于c,因为函数的对称轴方程为:x=,kz,令k=2,可得函数f(x)的图象关于直线x=对称,故c正确;对于d,因为函数的单调递增区间为:k,k,kz,令k=2,可得函数单调递增区间为:,故函数f(x)在区间(,)上不单调递增,故d错误故选d点睛:点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母而言. 函数是奇函数;函数是偶函数;函数是奇函数;函数是偶函数.由求增区间;由求减区间.11.“牟和方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上(图1),好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如(图2)所示,图中四边形是为体现其直观性所作的辅助线,当其正视图与侧视图完全相同时,它的正视图和俯视图分别可能是( )a. b. c. d. 【答案】a【解析】相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖)其正视图和侧视图是一个圆,俯视图是从上向下看,相对的两个曲面在同一个圆柱的侧面上俯视图是有2条对角线且为实线的正方形,故选a点睛:本题很是新颖,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖)根据三视图看到方向,可以确定三个识图的形状三视图是一个常考的内容,对于几何体,他描述的应该熟悉,想想出它的样子,才能够作对此题12.已知是函数的导函数,且对任意的实数x都有(e是自然对数的底数),若不等式的解集中恰有两个整数,则实数k的取值范围是( )a. b. c. d. 【答案】c【解析】【分析】设,则,可得由条件可得,从而,再求导分析出的单调性并画出的图像即可得解.【详解】由对任意的实数x都有,有,即设,则,所以,其中为常数.即所以,又,则,即所以,由得或,得.则 上单调递增,在上单调递减,在上单调递增,且,当时,当时,.其图像大致如下.不等式的解集中恰有两个整数,即的解集中恰有两个整数,则,即.故选: c【点睛】本题考查了利用导数研究其单调性极值与最值及其图象性质、方程与不等式的解法、数形结合思想方法、构造方法,考查了推理能力与计算能力,属于难题二、填空题(将答案填在答题纸上)13.已知实数,满足不等式组且的最大值为,则=_【答案】【解析】作出可行域,目标函数可变为,令,作出,由平移可知直线过时取最大值,则则故本题应填14.已知向量,如果,那么的值为_【答案】【解析】【分析】由,得,又,结合可求解.【详解】由,向量,有,即,故答案为:【点睛】本题考查两个向量的共线,诱导公式和二倍角公式的应用,属于中档题.15.已知三棱锥的底面是以ab为斜边的等腰直角三角形,则三棱锥的外接球的球心到平面abc的距离是_【答案】【解析】【分析】根据三棱锥的底面是以ab为斜边的等腰直角三角形,可得在面上的射影为的的中点,则平面,则三棱锥的外接球的球心在线段上,为与平面的距离,则可得出答案.【详解】由三棱锥的底面是以ab为斜边的等腰直角三角形,所以在面上的射影为的的中点,连接,如图.则平面,由,则上任意一点到 的距离都相等,所以三棱锥的外接球的球心在线段上,在中,为的中点,所以,在中,, 得,解得:,所以三棱锥的外接球的球心到平面abc的距离是.故答案为:【点睛】本题考查三棱锥的外接球的球心到平面的距离,考查球的性质,属于中档题.16.已知为等腰直角三角形,oc为斜边的高(1)若p为线段oc的中点,则_(2)若p为线段oc上的动点,则的取值范围为_【答案】 (1). (2). 【解析】分析】(1) 由条件可知,又,代入中,利用向量的数量积的定义可求解答案.(2) 当p为线段oc上的动点时,设 ,利用向量的数量积的运算性质和定义可求解.【详解】为等腰直角三角形,为斜边的高,则为边的中线,所以,.(1) 当为线段oc的中点时,在中,为边上的中线,则 所以(2)当p为线段oc上的动点时,设 ,. 所以的取值范围为故答案为:(1). (2). 【点睛】本题考查向量的加法运算,数量积的运算,本题还可以建立坐标系利用向量的坐标运算解决本题,属于中档题.三、解答题(解答应写出文字说明、证明过程或演算步骤)17.在锐角中, , , 为内角,的对边,且满足()求角的大小()已知,边边上的高,求的面积的值【答案】(1);(2).【解析】试题分析:()由,利用正弦定理和三角函数的恒等变换,可得,即可得到角的值;()由三角形的面积公式,代入,解得的值,及的值,再根据余弦定理,求得的值,由三角形的面积公式,即可求解三角形的面积.试题解析:(),由正弦定理得,且,(),代入,得,由余弦定理得:,代入,得,解得,或,又锐角三角形,18.已知等差数列中,公差,且,成等比数列求数列的通项公式;若为数列的前项和,且存在,使得成立,求实数的取值范围【答案】(1) (2) 【解析】试题分析:(1)由题意可得解得即可求得通项公式;(2),裂项相消求和 ,因为存在,使得成立,所以存在,使得成立,即存在,使得成立.求出的最大值即可解得的取值范围.试题解析:(1)由题意可得即又因为,所以所以.(2)因为,所以 .因为存在,使得成立,所以存在,使得成立,即存在,使得成立.又(当且仅当时取等号).所以,即实数的取值范围是.19.在如图所示的几何体中,四边形abcd为正方形,平面abcd,(1)求证:平面pad;(2)在棱ab上是否存在一点f,使得平面平面pce?如果存在,求的值;如果不存在,说明理由【答案】(1)证明见解析(2)存在,【解析】【分析】(1)根据已知条件便可证明平面bce平面pad,从而便得到ce平面pad;(2)首先分别以ab,ad,ap三直线为x,y,z轴,建立空间直角坐标系,要使平面def平面pce,则有这两平面的法向量垂直,设,平面pce的法向量为,根据即可求出,同样的办法表示出平面def的法向量,根据即可求出,从而求出的值.【详解】解:(1)设pa中点为g,连结eg,dg,因为,且,所以且,所以四边形bega为平行四边形,所以,且因为正方形abcd,所以,所以,且,所以四边形cdge为平行四边形,所以因为平面pad,平面pad,所以平面pad(2)如图,建立空间坐标系,则,所以,设平面pce的一个法向量为,所以 令,则,所以假设存在点满足题意,则,设平面def的一个法向量为,则,令,则,所以因为平面平面pce,所以,即,所以,故存在点满足题意,且【点睛】考查线面平行、面面平行的判定定理,通过建立空间直角坐标系,利用空间向量解决面面垂直问题的方法是常用的方法属于中档题.20.如图,在三棱锥中,o为ac的中点(1)证明:平面abc;(2)若点m在棱bc上,且,求点c到平面pom的距离(3)若点m在棱bc上,且二面角为30,求pc与平面pam所成角的正弦值【答案】(1)证明见解析(2)(3)【解析】【分析】(1)由条件, o为ac的中点可得,同理,求出的三边长,利用勾股定理可得,从而可证.(2)由(1)可知,平面平面abc,作,垂足为h,所以平面pom所以的长度为点c到平面pom的距离,然后通过解三角形解出即可.(3)以o为坐标原点,,的分别为x,轴,建立空间直角坐标系,平面pac的一个法向量,设,求出平面pam的法向量为,由,可求出的值,从而可求出pc与平面pam所成角的正弦值.【详解】证明:因为,o为ac的中点,所以,且连接ob因为,所以为等腰直角三角形,且,在中,由知,由,且,知平面abc(2)解:作,垂足为h又由(1)可得,所以平面pom故ch的长为点c到平面pom的距离由题设可知,在中,, 所以,则,即 又,所以所以点c到平面pom的距离为(3)解:如图,以o为坐标原点,,的分别为x,轴,建立空间直角坐标系,由已知得,取平面pac的一个法向量在平面内直线的平面直角坐标方程为:,设(),则,设平面pam的法向量为由 ,得可取,所以由已知可得,所以,解得(舍去),所以又,所以所以pc与平面pam所成角的正弦值为【点睛】本题考查线面垂直的证明,点面距离和根据二面角探索点的位置从而求线面角.利用向量法解决立体几何问题时,注意计算要准确,属于中档题.21.已知函数在处的切线斜率为2.()求的单调区间和极值;()若在上无解,求的取值范围. 【答案】() 单调递增区间为,单调递减区间为和 极小值为,极大值为 () 【解析】试题分析:()结合导函数的解析式有,则,由得或.结合导函数的符号研究函数的性质可得函数的单调递增区间为,单调递减区间为和.则函数的极小值为,极大值为;()构造新函数,令,由题意可得在上恒成立.其中,研究其分母部分,记,由题意可得.分类讨论:若,则单调递减恒成立.若,则在上单调递增.而,故与已知矛盾,舍去.综上可知,.试题解析:解:(),.,.令,解得或.当变化时,的变化情况如下表:函数的单调递增区间为,单调递减区间为和.函数的极小值为,极大值为;()令.在上无解,在上恒成立.,记,在上恒成立,在上单调

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论