




已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2009年河南省普通高等学校选拔优秀专科毕业生进入本科阶段学习考试高等数学题号一二三四五总分分值603040146150注意事项:答题前,考生务必将自己的姓名、座位号、考生号涂写在答题卡上。本试卷的试卷答案在答题卡上,答试卷上无效。一、选择题(每小题2分,共计60分)在每小题的四个备选答案中选出一个正确答案,有铅笔把答题卡上对应的题目的标号涂黑。如需改动,用橡皮擦干净后,再涂其他答案标号.1.下列函数相等的是 ( )A.,B. ,C.,D. ,【答案】D.解:注意函数的定义范围、解读式,应选D.2.下列函数中为奇函数的是 ( )A.B. C. D. 【答案】C.解:,选C.3极限的值是( )A.B.C.0 D.不存在 【答案】D.解:,应选D.4.当时,下列无穷小量中与等价是( ) A.B.C. D.【答案】C.解:由等价无穷小量公式,应选C.5.设,则是的 ( )A.连续点B.可去间断点C.跳跃间断点 D.无穷间断点【答案】B.解:是的可去间断点,应选B.6. 已知函数可导,且,则 ( )A. 2 B. -1 C.1 D.-2【答案】D.解:,应选D.7.设具有四阶导数且,则 ()ABC1 D【答案】D.解:,应选D.8.曲线在对应点处的法线方程( )A. B. C. D.【答案】A.解:,应选A.9.已知,且,则( )AB. C. D. 【答案】B.解:由得,把代入得,所以,应选B.10.函数在某点处连续是其在该点处可导的( )A. 必要条件 B. 充分条件 C. 充分必要条件 D. 无关条件【答案】A.解:根据可导与连续的关系知,应选A.11.曲线的凸区间为 ( ) A. B. C. D. 【答案】A.解:,应选A.12.设( )A.仅有水平渐近线B.既有水平又有垂直渐近线C.仅有垂直渐近线 D.既无水平又无垂直渐近线【答案】B.解:,应选B.13.下列说法正确的是 ( )A. 函数的极值点一定是函数的驻点B. 函数的驻点一定是函数的极值点 C. 二阶导数非零的驻点一定是极值点 D. 以上说法都不对【 答案】D.解:根据极值点与驻点的关系和第二充分条件,应选D.14. 设函数在连续,且不是常数函数,若,则在内 ( )A. 必有最大值或最小值 B.既有最大值又有最小值C.既有极大值又有极小值 D.至少存在一点,使【答案】A.解:根据连续函数在闭区间上的性质及的条件,在对应的开区间内至少有一个最值,应选A.15.若的一个原函数为 ,则( )A. B.C.D.【答案】B.解:,应选B.16.若,则( ) A. B. C. D. 【答案】C.解:=,应选C.17.下列不等式不成立的是( )A. B. C. D.【答案】D.解:根据定积分的保序性定理,应有,应选D.18.= ( )A.B.C. D.【答案】C.解:因,考察积分的可加性有,应选C.19下列广义积分收敛的是( )A. B. C. D.【答案】C.解:由广义积分性质和结论可知:是的积分,收敛的,应选C.20.方程在空间直角坐标系中表示的曲面是 ( ) A.球面 B.圆锥面C. 旋转抛物面D.圆柱面 【答案】C. 解:根据方程的特点是抛物面,又因两个平方项的系数相等,从而方程在空间直角坐标系中表示的曲面是旋转抛物面,应选C.21. 设,则与的夹角为 ( )A B C D【答案】D.解:,应选D.22.直线与平面的位置关系是 ( )A.平行但直线不在平面内 B.直线在平面内C. 垂直 D.相交但不垂直 【答案】A.解:因,直线在平面内或平行但直线不在平面内.又直线上点不在平面内.故直线与平面的位置关系是平行但直线不在平面内,应选A.23.设在点处有偏导数,则( )A. B. C. D.【答案】B.解:原式应选B.24函数的全微() A BCD【答案】D解:,应选D25化为极坐标形式为( ) ABCD【答案】D.解:积分区域有,应选D.26.设L是以A(-1,0),B(-3,2),C(3,0)为顶点的三角形区域的边界,方向为ABCA,则A.-8 B.0 C 8 D.20【答案】A.解:由格林公式知,,应选A.27.下列微分方程中,可分离变量的是 ( )A BCD 【答案】C.解:根据可分离变量微分的特点,可化为知,应选C.28.若级数收敛,则下列级数收敛的是( )A BCD 【答案】A.解:由级数收敛的性质知,收敛,其他三个一定发散,应选A.29.函数的幂级数展开为( )A BC D 【答案】C.解:根据可知,应选C.30.级数在处收敛,则此级数在处 ( )A条件收敛 B绝对收敛 C发散 D无法确定【答案】B.解:令,级数化为,问题转化为:处收敛,确定处是否收敛.由阿贝尔定理知是绝对收敛的,故应选B.二、填空题(每小题2分,共30分) 31.已知,则.解:.32.当时,与等价,则.解:.33.若,则.解:因,所以有 .34.设函数在内处处连续,则.解:函数在内处处连续,当然在处一定连续,又因为,所以.35.曲线在(2,2)点处的切线方程为_.解:因.36.函数在区间0,2上使用拉格朗日中值定理结论中.解:.37.函数的单调减少区间是 _.解:,应填或或或.38.已知则.解:.39.设向量与共线,且,则_.解:因向量与共线,可设为,,所以.40.设,则_.解:.41函数的驻点为_.解:.42区域为,则.解:利用对称性知其值为0或.43.交换积分次序后,.解:积分区域,则有.44.是的特解,则该方程的通解为_.解:的通解为,根据方程解的结构,原方程的通解为.45.已知级数的部分和,则当时,.解:当时,.三、计算题(每小题5分,共40分)46求. 解:.47.设是由方程确定的隐函数,求.解:方程两边对求导得即所以.48.已知,求. 解:方程两边对求导得,即,所以.故.49.求定积分.解:.50.已知 求全微分.解:因,且它们在定义域都连续,从而函数可微,并有.251.求,其中区域由直线围成.解:积分区域如图所示:把看作Y型区域,且有故有.52.求微分方程的通解.解:这是一阶线性非齐次微分方程,它对应的齐次微分方程的通解为,设原方程的解为代入方程得, 即有,所以, 故原方程的通解为.53.求幂级数的收敛区间(考虑区间端点).解:这是规范缺项的幂级数,考察正项级数, 因, 当,即时,级数是绝对收敛的; 当,即时,级数是发散的;当,即时,级数化为,显然是发散的。 故原级数的收敛区间为.四、应用题(每小题7分,共14分)54.靠一楮充分长的墙边,增加三面墙围成一个矩形场地,在限定场地面积为64的条件下.问增加的三面墙的各为多少时,其总长最小.解:场地如图所示:设增加的三面墙的长度分别为;总长为,则有,从而,问题就转化为求函数最小值问题.令得唯一驻点,且有,所以是极小值点,即为最小值点,此时.故,另增的三面墙的长度分别为,时,增加三面围墙的总长最小.55.设由曲线与直线围成的,其中3,求绕轴旋转形成的旋转体的体积.解:平面图形如图所示:把看作Y区域,且,代入Y
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 重庆市2025-2026学年高三上学期开学考试历史试题(无答案)
- 供应室回收课件模板
- 企业生存安全培训课件
- 淘宝平台广告管理办法
- 税务增值收费管理办法
- 网上虚拟身份管理办法
- 多传感器信息融合-第5篇-洞察及研究
- 保密观考试题及答案2025保密观知识竞赛试题及答案
- 出差人员安全培训课件
- 2025智能家居系统设计与开发合同模板
- (2024)新课标一年级语文上册 我上学了 第2课时 我爱我们的祖国 课件
- 《跨境直播运营》课件-跨境电商交易平台直播
- T-CCSAS014-2022《化工企业承包商安全管理指南》
- 液化气店转让合同范本
- 医学教育中的全科医学与专科医学的比较与协同
- 肠梗阻小讲课
- 《小儿支气管肺炎》课件
- 马克思主义经典著作选读
- 食材配送沟通服务方案
- 机房建设清单
- 003-04-PFMEA第五版表格模板-(带实例)-2020.2.3
评论
0/150
提交评论