数学人教版八年级上册多边形及其内角和教学设计.docx_第1页
数学人教版八年级上册多边形及其内角和教学设计.docx_第2页
数学人教版八年级上册多边形及其内角和教学设计.docx_第3页
数学人教版八年级上册多边形及其内角和教学设计.docx_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

多边形及其内角和教学设计教学主题113多边形及其内角和一、教材分析多边形的内角和是新人教版数学八年级上册第十一章第三节多边形及其内角和的第二课时。教学内容是多边形的内角和定理的推导和应用。起着承上启下的作用。在内容上,从三角形的内角和到多边形的内角和,再将多边形内角和应用于平面镶嵌、环环相扣、层层递进,这样编排易于激发学生学习的兴趣,适合学生的认知特点。二、学生分析学生已经学习了求三角形的内角和的方法,对于多边形的有关概念有所了解,理解并掌握了多边形的对角线概念。这为本节课的学习打下了一定的基础。在设计推导多边形内角和定理时首先采用作对角线将多边形划分为若干三角形的方法,然后再探索其他方法,这样比较符合学生的认知规律。另外,在以往的学习中,学生的动手实践、自主探究能力都得到一定的训练,本节课将进一步培养学生这些方面的能力。同时,本节课通过利用几何画板展示,动态图形展演充分调动学生学习的积极性和主动性。 三、教学目标1、知识目标:了解多边形内角和公式。能对多边形的内角和公式进行应用,解决实际问题。2、数学思考:通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。3、解决问题:通过探索多边形内角和公式,尝试从不同角度寻求解决问题的方法并能有效地解决问题。4、情感态度目标:通过猜想、推理活动感受数学活动充满着探索以及数学结论的确定性,提高学生学习热情。四、教学环境R简易多媒体教学环境 交互式多媒体教学环境 网络多媒体环境教学环境 移动学习 其他五、信息技术应用思路在本课的教学中,我准备使用多媒体课件、几何画板作图演示等信息化教学技术参与教学。在导入新课阶段,展示多媒体课件,通过实物图片让学生复习与本课相关的多边形及其对角线的知识,为后续多边形内角和的学习作好铺垫;在探究新知阶段,利用几何画板实际测量几种不同多边形的内角和,使学生形象、直观的观察、理解多边形的内角和随边数的改变而改变,并只与其边数多少相关这一不变定律,从而与其它推理论证方法相得益彰。六、教学流程设计教学环节教师活动学生活动信息技术支持创设情境,导入新知让我们再次走进多彩的图形世界,进一步探究有关多边形的问题。我们知道三角形的内角和等于180度,正方形,长方形的内角和等于360度,那么其他四边形呢?那么,五边形、六边形呢?(板书课题) 观看图片,回忆相关知识,自主思考问题。学生先独立思考每个问题再分组讨论。展示多媒体课件中各种多边形实物。以问题引思考,导入新课题。动手操作,探究新知问题:1、任意四边形的内角和是多少度?2、能否利用三角形的内角和进行转化呢?设计并进行数学实验:方案一、任意画一个四边形,通过度量得出内角和。方案二、剪下四边形卡纸的三个内角,拼到最后一个内角上得内角和。方案三、连接四边形的一条对角线,将其转化为两个三角形,从而得出四边形内角和。投影展示四边形四个内角的拼接;利用几何画板实际测量验证四边形的内角和归纳总结,获得新知问题:四人一个小组,讨论一下五边形的内角和应该怎样计算呢?启发:我们利用数学转化思想,把求多边形的内角和的问题转化为求若干三角形的内角和,关键是将n边形分割转化为三角形。再进一步想一想,就会有更多方法:如果点在多边形的其他位置呢?探索一、在五边形内部任意取一个点p,与各个顶点连接。探索二、在五边形一条边上任意取一个点p,与不相邻的顶点连接。探索三、在五边形外部任意取一个点p,与各个顶点连接。探索四、过五边形一个顶点,作五边形的一条对角线,把五边形分成一个三角形和一个四边形,这样进行转化得到结论。动画展示转化过程,让学生自己利用几何画板精确的度量功能亲自验证五边形的内角和。归纳总结,梳理新知合作议一议,就会找到规律。问题:多边形的内角和与多边形的边数有什么关系?启发:从五边形、六边形一个顶点作对角线,可引多少条对角线?可把多边形分成多少个三角形?内角和是多少?分成的三角形的个数与多边形的边数有什么关系?n边形从一个顶点可作多少条对角线?可构成多少个三角形?内角和怎样求?你能得出求n边形内角和的公式吗?学生主动实验,积极思考,踊跃交流。总结规律边数34567n三角形数12345n-2内角和18011802180318041805(n-2)180归纳结论:n边形的内角和=(n-2)180投影仪展示分割过程,通过课件演示,形象的展示一般规律,学生易于理解化特殊为一般、分类和化归的思想来证明结论;得出多边形内角和定理。动脑思考,例题解析低:(1)十边形的内角和为 ()度。中:(2)已知一个多边形的内角和为1 080,则它的边数为()。高:(3)如果一个四边形的一组对角互补,那么另一组对角有什么关系?学生先独立思考,再进行小组交流,然后进行汇报。提高学生分析问题和解决问题的能力。通过幻灯片展示问题串,方便有效,在展示时可以选择一般的学生进行简单的结果展示,选择较好的学生进行有难度的问题的原因和过程展示。反思小结布置作业引导学生对本节课学习中所得到的新知识,进行小结,提高学生自主建构知识网络,分析、解决问题的能力。学生小结,教师完善;针对本节课的知识布置相关作业。总结活动情况,重在肯定与鼓励。作业分层,使处于不同学习程度的学生均有所收获。七、教学特色1、本课设计中力求充分发挥信息技术多媒体的优势,为学生提供多方位、开放性的获取知识的途径,尤其是在探究多边形的内角和公式时,给学生充分的表现空间和时间。让学生根据自身学习情况制定学习进程,使学习过程本身就是个能动的过程。

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论