




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
221.2二次函数yax2的图象和性质1能够用描点法作出函数的图象,并能根据图象认识和理解其性质2初步建立二次函数表达式与图象之间的联系,体会数形的结合与转化,体会数学内在的美感重点:描点法作出函数的图象难点:根据图象认识和理解其性质一、自学指导(7分钟)自学:自学课本P3031“例1”“思考”“探究”,掌握用描点法作出函数的图象,理解其性质,完成填空(1) 画函数图象的一般步骤:取值描点连线;(2) 在同一坐标系中画出函数yx2和y-x2的图像x-2-1.5-1-0.500.511.5242.2510.2500.2512.254-4-2.25-1-0.250-0.25-1-2.25-4(3)在同一坐标系中画出函数yx2,y2x2和的图象;X-4-3-2-10123484.520.500.524.58X-2-1.5-1-0.500.511.5284.520.500.524.58X-3-2-1.5-1011.523-6-1.50-1.5-6点拨精讲:根据y0,可得出y有最小值,此时x0,所以以(0,0)为对称点,对称取点(3)观察上述图象的特征:形状是抛物线,开口向上,图象关于y轴对称,其顶点坐标是(0,0),其顶点是最低点(最高点或最低点);(4)找出上述三条抛物线的异同:_探索二次函数图像及其性质抛物线()性质:对称性如何?位于哪些象限?函数的最大、最小值?顶点坐标?开口方向以及开口大小如何?增减性如何?二次函数的性质yax2a0a0位置延伸方向在x轴上方在y轴左右两侧同时向上无限延伸在x轴下方在y轴左右两侧同时向下无限延伸开口开口向上开口向下a的绝对值越大,开口越小对称性关于y轴对称,对称轴方程是x0顶点顶点坐标是原点(0,0)顶点是最低点顶点是最高点增减性在对称轴左侧递减在对称轴右侧递增在对称轴左侧递增在对称轴右侧递减二次函数性质的简单应用1、根据函数图象填空:(1)抛物线y=2x2的顶点坐标是 ,对称轴是 ,在 侧,y随着x的增大而增大;在 侧,y随着x的增大而减小,当x= 时,函数y的值最小,最小值是 ,抛物线y=2x2在x轴的 方(除顶点外)。(2)抛物线 x轴的 方(除顶点外),在对称轴的左侧,y随着x的 ;在对称轴的右侧,y随着x的 ,当x=0时,函数y的值最大,最大值是 ,当x 0时,y0时,抛物线的开口向上,顶点是抛物线的最低点a越大,抛物线的开口越小;当a0时,开口向上;a0,即m2,只能取m2.这个最低点为抛物线的顶点,其坐标为(0,0),当x0时,y随x的增大而增大(3)若函数有最大值,则抛物线开口向下,m20,即m0时,y随x的增大而减小二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路(5分钟)1二次函数yax2与yax2的图象之间有何关系?2已知函数yax2经过点(1,3)(1)求a的值;(2)当xx20,则y1与y2的关系是_y1y2_4二次函数yax2与一次函数yax(a0)在同一坐标系中的图象大致是(B)点拨精讲:1.二次函数yax2的图象的画法是列表、描点、连线,列表时一般取57个点,描点时可描出一侧的几个点,再根据对称性找出另一侧的几个点,连线将几个点用平滑的曲线顺次连接起来,抛物线的两端要无限延伸,要“出头”;2抛物线yax2的开口大
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高中分子与细胞课件
- 高三物理最后一课课件
- 高三家长会课件
- 高一政治课件资本主义
- 知识产权保护劳动合同补充协议书变更
- 《离婚冷静期间婚姻法律咨询与代理服务合同》
- 汽车美容店租赁合同经营许可及监管协议
- 智能家居研发合伙协议退伙技术成果转化协议
- 智能制造工程合同签订关键要素及法律风险防范
- 离婚诉讼中子女抚养费及扶养费调整协议书
- 【一例重症肺炎的个案护理案例报告6000字(论文)】
- 员工培训体系优化研究
- 冯友兰-人生的境界课件
- 传热学全套PPT完整教学课件
- 部编版六年级道德与法治上册第5课《国家机构有哪些》优秀课件
- 高中心理健康教育北师大版高二全册第6课《温故知新》省级名师优质课教案比赛获奖教案示范课教案公开课教案
- 瑞美检验医生工作站操作手册
- 欧美电影文化(上海工程技术大学)【智慧树知到】网课章节答案
- 双人心肺复苏
- 全过程工程咨询服务大纲
- T-GDPA 3-2021 奥利司他胶囊质量标准
评论
0/150
提交评论