1978年全国统一高考数学试卷(附加题).doc_第1页
1978年全国统一高考数学试卷(附加题).doc_第2页
1978年全国统一高考数学试卷(附加题).doc_第3页
1978年全国统一高考数学试卷(附加题).doc_第4页
1978年全国统一高考数学试卷(附加题).doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1978年全国统一高考数学试卷(附加题)一、解答题(共7小题,满分100分)1(14分)(1)分解因式:x22xy+y2+2x2y3(2)求,(3)求函数y=的定义域(4)已知直圆锥体的底面半径等于1cm,母线的长等于2cm,求它的体积(5)计算:的值2(14分)已知两数x1,x2满足下列条件:(1)它们的和是等差数列1,3,的第20项;(2)它们的积是等比数列2,6,的前4项和求根为的方程3(14分)已知:ABC的外接圆的切线AD交BC的延长线于D点,求证:4(14分)(如图)CD是BC的延长线,AB=BC=CA=CD=a,DM与AB,AC分别交于M点和N点,且BDM=求证:,5(14分)设有f(x)=4x44px3+4qx2+2p(m+1)x+(m+1)2(p0)求证:(1)如果f(x)的系数满足p24q4(m+1)=0,那么f(x)恰好是一个二次三项式的平方(2)如果f(x)与F(x)=(2x2+ax+b)2表示同一个多项式,那么p24q4(m+1)=06(14分)已知:asinx+bcosx=0 ,Asin2x+Bcos2x=C ,其中a,b不同时为0,求证:2abA+(b2a2)B+(a2+b2)C=07(16分)已知L为过点P且倾斜角为30的直线,圆C为圆心是坐标原点且半径等于1的圆,Q表示顶点在原点而焦点是的抛物线,设A为L和C在第三象限的交点,B为C和Q在第四象限的交点(1)写出直线L、圆C和抛物线Q的方程,并作草图(2)写出线段PA、圆弧AB和抛物线上OB一段的函数表达式(3)设P、B依次为从P、B到x轴的垂足,求由圆弧AB和直线段BB、BP、PP、PA所包含的面积1978年全国统一高考数学试卷(附加题)参考答案与试题解析一、解答题(共7小题,满分100分)1(14分)(1)分解因式:x22xy+y2+2x2y3(2)求,(3)求函数y=的定义域(4)已知直圆锥体的底面半径等于1cm,母线的长等于2cm,求它的体积(5)计算:的值考点:对数函数的定义域;根式与分数指数幂的互化及其化简运算;棱柱、棱锥、棱台的体积 专题:计算题分析:(1) 把(xy)看做一个整体,整式即:(xy)2+2(xy)3(2)应用特殊角的三角函数值(3)分母不为0,对数的真数大于0(4)先求出圆锥的高,代入体积公式计算(5)使用分数指数幂的运算法则化简每一项,然后合并同类项解答:解:(1)原式=(xy)2+2(xy)3=(xy1)(xy+3)(2)原式=0+1=(3)255x0,且x+10x2且x1,所求定义域为:(,1)(1,2)(4)(5)原式=10(2 )+30=102010+30=20+30=20+点评:(1)体现整体的数学思想(2)记住特殊角的三角函数值(3)分式的分母不为0,对数的真数大于0(4)直接使用圆锥的体积公式(5)分数指数幂的运算法则的使用本题的最后一项可能不对2(14分)已知两数x1,x2满足下列条件:(1)它们的和是等差数列1,3,的第20项;(2)它们的积是等比数列2,6,的前4项和求根为的方程考点:利用导数研究函数的单调性;一元二次方程的根的分布与系数的关系分析:1由等差数列通项公式求出第二十项2由等比数列求前n项和求出前四项和3接下来可以求解x1,x2也可利用技巧直接求出两根之和两根之积解答:解:x1+x2=39 ,x1x2=40 ,故得:1/x1+1/x2=由式得.=由初中所学一元二次函数根与系数关系得所求方程为:40x2+39x1=0点评:本题考查数列通项公式和前n项和公式以及一元二次方程根与系数关系3(14分)已知:ABC的外接圆的切线AD交BC的延长线于D点,求证:考点:相似三角形的判定专题:证明题分析:由AD是ABC的外接圆的切线得到角相等进而得两个三角形相似,可得三角形的面积比与相似比的平方的关系,再结合三角形面积公式即可证得解答:证:因为AD是ABC的外接圆的切线,所以B=1ABDCAD作AEBD于点E,则故得证点评:本题主要考查相似三角形的判定,在圆中找相等的角,依据是弦切角和同弧所对的圆周角相等相等,再根据相似三角形的判定即可得到4(14分)(如图)CD是BC的延长线,AB=BC=CA=CD=a,DM与AB,AC分别交于M点和N点,且BDM=求证:,考点:三角形中的几何计算专题:证明题分析:由题意及图形作MEDC于E,由ABC是等边三角形,在直角MBE中利用正切的定义即可;同理,过N作NFBC于F,在直角NFC中也可求得CN解答:证明:证作MEDC于E,由ABC是等边三角形,在直角MBE中,类似地,过N作NFBC于F,在直角NFC中,可证:点评:此题考查了学生的识图能力,还考查了解三角形及正切函数定义,还考查了学生的计算能力5(14分)设有f(x)=4x44px3+4qx2+2p(m+1)x+(m+1)2(p0)求证:(1)如果f(x)的系数满足p24q4(m+1)=0,那么f(x)恰好是一个二次三项式的平方(2)如果f(x)与F(x)=(2x2+ax+b)2表示同一个多项式,那么p24q4(m+1)=0考点:函数与方程的综合运用专题:证明题分析:(1)利用配方法和因式分解法的方法将该函数表达式进行因式分解(2)利用多项式相等建立各项系数的相等关系,将无关的系数消掉,建立起字母p,q,m的关系解答:证明:(1),=f(x)等于一个二次三项式的平方(2)4x44px3+4qx2+2p(m+1)+(m+1)2=(2x2+ax+b)2=4x44ax3+(a2+4b)x2+2abx+b2,由(1)可得a=p代入(2)得将a,b的表达式代入(3)得,pp24q4(m+1)=0p0,p24q4(m+1)=0点评:本题考查多项式的因式分解,考查待定系数法注意配方法和分组分解因式的方法注意多项式相等的转化方法6(14分)已知:asinx+bcosx=0 ,Asin2x+Bcos2x=C ,其中a,b不同时为0,求证:2abA+(b2a2)B+(a2+b2)C=0考点:三角函数恒等式的证明 专题:证明题分析:可先,通过可得x=y+k,进而可求出sin2x和cos2x代入 即可得证解答:证明:则可写成cosysinxsinycosx=0,sin(xy)=0xy=k(k为整数),x=y+k又sin2x=sin2(y+k)=sin2y=2sinycosy=cos2x=cos2y=cos2ysin2y=代入,得,2abA+(b2a2)B+(a2+b2)C=0点评:本题主要考查三角函数恒等式的证明证明此类问题时应考虑:异名化同名,异角化同角,公式的正用、逆用、变形用7(16分)已知L为过点P且倾斜角为30的直线,圆C为圆心是坐标原点且半径等于1的圆,Q表示顶点在原点而焦点是的抛物线,设A为L和C在第三象限的交点,B为C和Q在第四象限的交点(1)写出直线L、圆C和抛物线Q的方程,并作草图(2)写出线段PA、圆弧AB和抛物线上OB一段的函数表达式(3)设P、B依次为从P、B到x轴的垂足,求由圆弧AB和直线段BB、BP、PP、PA所包含的面积考点:直线与圆锥曲线的综合问题;直线的一般式方程;圆的标准方程;抛物线的标准方程 专题:综合题;数形结合分析:(1)由题意代入点斜式求直线方程,代入标准式求圆的方程和抛物线的方程;(2)分别联立直线、圆和抛物线的方程,求出交点的横坐标,再通过图形表示出线段PA、圆弧AB和抛物线上OB一段的函数表达式,注意范围;(3)先作出图形再把图形进行分割,再由(2)求的点A、B的坐标求每一部分的面积,最后再求和解答:解:(1)由题意知,直线L的方程为y+=(x+),即y=x;圆C的方程为x2+y2=1,抛物线Q的方程为草图为:(2)由,解得A点横坐标线段PA的函数表达式为:由,解得B点横坐标圆弧AB的函数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论