




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
华加法交换律 教学设计 加法交换律 教学设计 张齐华 教学内容: 义务教育课程标准实验教科书数学(苏教版)四年级上册“交换律”。 教学目标: 1认识并能运用加法交换律和乘法交换律。 2经历“形成猜想、举例验证”的完整、真实的过程,感悟数学研究的一般方法。 教学过程: 一、引发猜想。 1介绍“朝三暮四”的故事,引导学生得出等式“3+4=4+3”。 2引导学生由等式“3+4=4+3”引发猜想:是否任意两数相加,交换位置,和都不变? 二、举例验证。 1交流:有了猜想,我们还得验证。你打算怎么验证? 2学生举例验证,教师巡视指导。 3教师呈现学生中通常出现的两种不同的举例方法,引导学生思考:你赞成哪一种,为什么? 4学生交流所举例子,教师选择部分例子写在黑板上。 5教师根据实际情况,呈现某学生研究这一猜想时给出的部分例子,引导学生观察这些例子,并通过比较,体会这些例子对于验证这一猜想的作用。 6小结举例验证的方法,揭示“加法交换律”。 三、类比拓展。 1引导学生由加法类比到减法、乘法和除法,并自觉形成关于减法、乘法和除法中是否有交换律的三个新猜想。 2学生选择部分猜想,举例进行研究。教师参与,适时给予指导。 3交流:哪一猜想是正确的,你们是怎么举例验证得出结论的?教师板书若干例子,进而得出结论。 4探讨:减法和除法中有交换律吗?学生交流后,引导思考:为什么只要举一个反例就能推翻猜想? 5沟通与拓展。 四、直观论证。 1深究:为什么两数相加,交换他们的位置,和会不变呢?两数相乘,交换他们的位置,积又为何不变呢? 2借助集合图和点子图,直观地帮助学生深入理解加法和乘法交换律,并渗透朴素的证明思想。 五、沟通联系。 1沟通加法交换律、乘法交换律与以往所学数学内容之间的联系。 2重新审视以往用“交换两个加数或乘数的位置,再算一遍”的方法验算加法和乘法的合理性,深化对交换律的理解。 六、应用提升。 依次完成几道填空题,并相机引导学生用含有字母的式子表示出加法和乘法的交换律,体验数学语言的简洁。 七、小结延伸。加法的交换律和结合律教学内容:四年级上册P56-57例题,完成P58的“想想做做”。教学目标:1、使学生经历探索加法交换律和结合律的过程,理解并掌握加法交换律和结合律,初步感知加法运算律的价值,发展应用意识。2、使学生在学习用符号、字母表示自己发现的运算律的过程中,初步发展符号感,初步培养归纳、推理的能力,逐步提高抽象思维能力。3、使学生在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成独立思考和探究问题的意识和习惯。教学过程:一、情境引入:(1)同学们你们喜欢体育活动吧?谁来说说你最喜欢哪项体育活动?(2)(出示图),仔细观察这幅图,你从图上知道哪些信息?(3)根据这些信息,你能提出哪些用加法计算的问题?A、参加跳绳的有多少人?B、参加活动的女生有多少人?C、参加活动的一共有多少人?二、探索加法交换律:1、(1)要求参加跳绳的有多少人,应该怎样列式计算?指名回答,教师板书:28+17=45(人)还可怎么列式?板书:17+28=45(人)(2)观察算式有什么相同点?不同在哪里?我们可以用怎样的方法连接这两道算式?(等号)板书:28+17=17+28(3)同样解决第二个问题,得到等式:板书:17232317(4)你能照样子说出一个这样的等式吗?试试看。(5)观察每一组的两个算式都有什么共同的地方?有什么不同的地方(同桌交流)? (6)从这些例子中,你发现了什么规律?(7)用自己喜欢的方法把它们的规律表示出来。可以用符号、字母、文字等表示。(8)观察板演的等式,说说自己的想法。小结:两个数相加,交换加数的位置和不变这一规律叫做加法的交换律(板书:加法交换律),在数学上,我们通常用字母表示:a+b=b+a2、练习。(1)填空 96+35=35+ 204+=57+204 (2)下面的等式符合加法交换律吗?为什么? 46+59=46+59 90+10=5+95(3)计算357+218,并用加法交换律进行验算。三、探索加法结合律1、要求 “参加活动的一共有多少人”会列式吗?(1)指名回答,板书:28+17+23第一步先求什么?为了看得更清楚,我们可给28+17添上括号,表示参加跳绳的总人数:(28+17)+23,再求什么?结果是多少? (2)还是这个式子28+17+23(板书)如果要先算参加活动的女生人数应该怎么办?教师添上括号:28+(17+23),添上括号后表示先求什么,再求什么?结果是多少? (3)请同学们比较这两道算式:它们有什么相同点和不同点? (4)这两道算式结果相同我们可把它写成怎样的等式? 板书:(28+17)+23=28+(17+23) (5)算一算,下面的里能填上等号吗? (45+25)+1345+(25+13) (36+18)+2236+(18+22)3、归纳加法结合律: (1)观察这三个等式, 每组的两个算式有什么相同的地方?有什么不同的地方? 你从这些等式中能发现怎样的规律?和你的同桌交流一下。 (2)你能用字母a、b、c代表这三个加数把上面的规律表示出来吗?(独立写一写) 板书:(a+b)+c=a+(b+c) (3)小结:三个数连加,改变运算顺序,和不变。这就是加法结合律。(板书:加法 结合律)4、练习:在里填上合适的数。(45+36)+64=45+(+)560+(140+70)=(560+)+四、巩固练习1、“想想做做”1(以游戏的方式进行)2、想想做做4。请每个同学选一组题独立完成。反馈提问:每组两道题的得数相同哪种方法简便,为什么?3、哪两片树叶上数的和是100?连一连四、课堂总结通过本节课的学习,你有什么收获?五、布置作业第58页第3题“加法交换律和结合律”教案 作者:蒋梅芳转贴自:本站原创点击数:535更新时间:2007-11-22文章录入:abc (教学交换律张齐华一个例子,究竟能说明什么?师:喜欢听故事吗?生:喜欢。师:那就给大家讲一个“朝三暮四”的故事吧。(故事略)听完故事,想说些什么吗?结合学生发言,教师板书:3+4=4+3。师:观察这一等式,你有什么发现?生1:我发现,交换两个加数的位置和不变。(教师板书这句话) 师:其他同学呢?(见没有补充)老师的发现和他很相似,但略有不同。(教师随即出示:交换3和4的位置和不变)比较我们俩给出的结论,你想说些什么?生2:我觉得您(老师)给出的结论只代表了一个特例,但他(生1)给出的结论能代表许多情况。生3:我也同意他(生2)的观点,但我觉得单就黑板上的这一个式子,就得出“交换两个加数的位置和不变”好像不太好。万一其它两个数相加的时候,交换它们的位置和不等呢!我还是觉得您的观点更准确、更科学一些。师:的确,仅凭一个特例就得出“交换两个加数的位置和不变”这样的结论,似乎草率了点。但我们不妨把这一结论当作一个猜想(教师随即将生1给出的结论中的“。”改为“?”)。既然是猜想,那么我们还得生:验证。验证猜想,需要怎样的例子?师:怎么验证呢?生1:我觉得可以再举一些这样的例子?师:怎样的例子,能否具体说说?生1:比如再列一些加法算式,然后交换加数的位置,看看和是不是跟原来一样。(学生普遍认可这一想法)师:那你们觉得需要举多少个这样的例子呢?生2:五、六个吧。生3:至少要十个以上。生4:我觉得应该举无数个例子才行。不然,你永远没有说服力。万一你没有举到的例子中,正好有一个加法算式,交换他们的位置和变了呢?(有人点头赞同)生5:我反对!举无数个例子是不可能的,那得举到什么时候才好?如果每次验证都需要这样的话,那我们永远都别想得到结论!师:我个人赞同你(生5)的观点,但觉得他(生4)的想法也有一定道理。综合两人的观点,我觉得是不是可以这样,我们每人都来举三、四个例子,全班合起来那就多了。同时大家也留心一下,看能不能找到“交换加数位置和发生变化”的情况,如果有及时告诉大家行吗?学生一致赞同,随后在作业纸上尝试举例。师:正式交流前,老师想给大家展示同学们在刚才举例过程中出现的两种不同的情况。(教师展示如下两种情况:1先写出1223和2312,计算后,再在两个算式之间添上“”。2不计算,直接从左往右依次写下“12232312”。)师:比较两种举例的情况,想说些什么?生6:我觉得第二种情况根本不能算举例。他连算都没算,就直接将等号写上去了。这叫不负责任。(生笑)生7:我觉得举例的目的就是为了看看交换两个加数的位置和到底等不等,但这位同学只是照样子写了一个等式而已,至于两边是不是相等,他想都没想。这样举例是不对的,不能验证我们的猜想。(大家对生6、生7的发言表示赞同。)师:哪些同学是这样举例的,能举手示意一下吗?(几位同学不好意思地举起了手。)师:明白问题出在哪儿了吗?(生点头)为了验证猜想,举例可不能乱举。这样,再给你们几位一次补救的机会,迅速看看你们写出的算式,左右两边是不是真的相等。师:其余同学,你们举了哪些例子,又有怎样的发现?生8:我举了三个例子,7887,2992,4774。从这些例子来看,交换两个加数的位置和不变。生9:我也举了三个例子,5445,30151530,200500500200。我也觉得,交换两个加数的位置和不变。(注:事实上,选生8、生9进行交流,是教师有意而为之。)师:两位同学举的例子略有不同,一个全是一位数加一位数,另一个则有一位数加一位数、二位数加两位数、三位数加三位数。比较而言,你更欣赏谁?生10:我更欣赏第一位同学,他举的例子很简单,一看就明白。生11:我不同意。如果举得例子都是一位数加一位数,那么我们最多只能说,交换两个一位数的位置和不变。至于加数是两位数、三位数、四位数等等,就不知道了。我更喜欢第二位同学的。生12:我也更喜欢第二位同学的,她举的例子更全面。我觉得,举例就应该这样,要考虑到方方面面。(多数学生表示赞同。)师:如果这样的话,那你们觉得下面这位同学的举例,又给了你哪些新的启迪?教师出示作业纸:0+88+0,62121+6,1/9+4/94/91/9。生:我们在举例时,都没考虑到0的问题,但他考虑到了。生:他还举到了分数的例子,让我明白了,不但交换两个整数的位置和不变,交换两个分数的位置和也不变。师:没错,因为我们不只是要说明“交换两个整数的位置和不变”,而是要说明,交换生:任意两个加数的位置和不变。师:看来,举例验证猜想,还有不少的学问。现在,有了这么多例子,能得出“交换两个加数的位置和不变”这个结论了吗?(学生均表示认同)有没有谁举例时发现了反面的例子,也就是交换两个加数位置和变了?(学生摇头)这样看来,我们能验证刚才的猜想吗?生:能。(教师重新将“?”改成“。”,并补充成为:“在加法中,交换两个加数的位置和不变。”)教学交换律张齐华一个例子,究竟能说明什么?师:喜欢听故事吗?生:喜欢。师:那就给大家讲一个“朝三暮四”的故事吧。(故事略)听完故事,想说些什么吗?结合学生发言,教师板书:3+4=4+3。师:观察这一等式,你有什么发现?生1:我发现,交换两个加数的位置和不变。(教师板书这句话) 师:其他同学呢?(见没有补充)老师的发现和他很相似,但略有不同。(教师随即出示:交换3和4的位置和不变)比较我们俩给出的结论,你想说些什么?生2:我觉得您(老师)给出的结论只代表了一个特例,但他(生1)给出的结论能代表许多情况。生3:我也同意他(生2)的观点,但我觉得单就黑板上的这一个式子,就得出“交换两个加数的位置和不变”好像不太好。万一其它两个数相加的时候,交换它们的位置和不等呢!我还是觉得您的观点更准确、更科学一些。师:的确,仅凭一个特例就得出“交换两个加数的位置和不变”这样的结论,似乎草率了点。但我们不妨把这一结论当作一个猜想(教师随即将生1给出的结论中的“。”改为“?”)。既然是猜想,那么我们还得生:验证。验证猜想,需要怎样的例子?师:怎么验证呢?生1:我觉得可以再举一些这样的例子?师:怎样的例子,能否具体说说?生1:比如再列一些加法算式,然后交换加数的位置,看看和是不是跟原来一样。(学生普遍认可这一想法)师:那你们觉得需要举多少个这样的例子呢?生2:五、六个吧。生3:至少要十个以上。生4:我觉得应该举无数个例子才行。不然,你永远没有说服力。万一你没有举到的例子中,正好有一个加法算式,交换他们的位置和变了呢?(有人点头赞同)生5:我反对!举无数个例子是不可能的,那得举到什么时候才好?如果每次验证都需要这样的话,那我们永远都别想得到结论!师:我个人赞同你(生5)的观点,但觉得他(生4)的想法也有一定道理。综合两人的观点,我觉得是不是可以这样,我们每人都来举三、四个例子,全班合起来那就多了。同时大家也留心一下,看能不能找到“交换加数位置和发生变化”的情况,如果有及时告诉大家行吗?学生一致赞同,随后在作业纸上尝试举例。师:正式交流前,老师想给大家展示同学们在刚才举例过程中出现的两种不同的情况。(教师展示如下两种情况:1先写出1223和2312,计算后,再在两个算式之间添上“”。2不计算,直接从左往右依次写下“12232312”。)师:比较两种举例的情况,想说些什么?生6:我觉得第二种情况根本不能算举例。他连算都没算,就直接将等号写上去了。这叫不负责任。(生笑)生7:我觉得举例的目的就是为了看看交换两个加数的位置和到底等不等,但这位同学只是照样子写了一个等式而已,至于两边是不是相等,他想都没想。这样举例是不对的,不能验证我们的猜想。(大家对生6、生7的发言表示赞同。)师:哪些同学是这样举例的,能举手示意一下吗?(几位同学不好意思地举起了手。)师:明白问题出在哪儿了吗?(生点头)为了验证猜想,举例可不能乱举。这样,再给你们几位一次补救的机会,迅速看看你们写出的算式,左右两边是不是真的相等。师:其余同学,你们举了哪些例子,又有怎样的发现?生8:我举了三个例子,7887,2992,4774。从这些例子来看,交换两个加数的位置和不变。生9:我也举了三个例子,5445,30151530,200500500200。我也
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年临床医师综合笔试模拟试题(附答案)
- 2025年就业指导与职业规划考试试题及答案
- 江西公务员真题2025
- 2025年土地估价师复习土地市场主体与客体试题(附答案)
- 90天企业销售目标达成行动计划
- 2025年国际经济学考试试卷及答案
- (2025)消防安全知识考试试题(含参考答案)
- 2025年孕前优生健康检查规范化专题培训试题(附答案)
- 无公害蔬菜动物饲料创新创业项目商业计划书
- 家用电器修理创新创业项目商业计划书
- 2024-2025学年浙江省“精诚联盟”10月联考高一年级第一学期数学试题含答案
- 四川省建筑工程资料表格
- 小学生海姆立克急救法
- 第八届全国职工职业技能大赛(网络和信息安全管理员)海南省赛试题库-下(多选、判断题)
- 习思想以中国式现代化全面推进中华民族伟大复兴
- 学习任务十 汽车执行器电路控制与检测 (1)讲解
- 成都麓湖生态城案例详解
- 2024团校考试入团考试题库(含答案)
- 2024年第九届“学宪法 讲宪法”应知应会知识竞赛题库及答案
- 停车场(库)管理办法立法后评估报告
- 火车指导司机面试竞聘答辩问题
评论
0/150
提交评论