72用代入法解二元一次方程组(1).doc_第1页
72用代入法解二元一次方程组(1).doc_第2页
72用代入法解二元一次方程组(1).doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

7、2-1解二元一次方程组(一)【教学目标】1.会用代入消元法解二元一次方程组2.了解解二元一次方程组的消元思想,初步体现数学研究中“化未知为已知”的化归思想,从而“变陌生为熟悉”【重点】用代入法解二元一次方程组,基本方法是消元化二元为一元.【难点】用代入法解二元一次方程组的基本思想是化归化陌生为熟悉.【教学过程】一.引入上节课我们讨论的老牛和小马的包裹谁的多的问题,经过大家的共同努力,得出了二元一次方程组, 到底谁的包裹多呢?这就需要解这个二元一次方程组.二.新课讲解一元一次方程我们会解,二元一次方程组如何解呢?我们大家知道二元一次方程只需要消去一个未知数就可变为一元一次方程,那么我们发现:由得 由于方程组中相同的字母表示同一个未知数,所以方程中的y也等于,可以用代替方程中的.这样有 解所得的一元一次方程, 得.再把代入, 得.这样得到二元一次方程组的解因此,老牛驮了7个包裹,小马驮了5个包裹例1 解方程组 解:将代入,得 将代入, 得 所以原方程组的解是 例2 解方程组 分析:此题不同于例1, (即用含有一个未知数的代数式表示另一个未知数),式不能直接代入,那么我们应当怎样处理才能转化为例1式这样的形式呢? (应先对式进行恒等变形,把它化为例1中式那样的形式.)让学生分小组合作完成上述例题,请两个小组的代表上黑板来板演.解:由,得 将代入,得 将代入,得 所以原方程组的解是 三.议一议上面解方程组的基本思路是什么?主要步骤有哪些?上面解方程组的基本思路是“消元”把“二元”变为“一元”。主要步骤是:将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程。解这个一元一次方程,把求得的一次方程的解代入方程中,这种解方程组的方法称为代入消元法,简称代入法.四.练一练、课本P223随堂练习五.小结、今天我们学习了二元一次方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论