




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课 题:1.7 四种命题(1)教学目的:1理解四种命题的概念;掌握四种命题的形式,能写出一个简单的命题(原命题)的逆命题、否命题、逆否命题2培养观察分析、抽象概括能力和逻辑思维能力;教学重点:理解四种命题的概念、形式教学难点:四种命题的关系授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪内容分析:学生在初中数学中,学习过简单的命题(包括原命题与逆命题)知识,掌握了简单的推理方法(包括对反证法的了解)由此,这一大节首先讲述四种命题及其相互关系,并且在初中的基础上,结合四种命题的知识,进一步讲解反证法然后,通过若干实例,讲述了充分条件、必要条件和充要条件的有关知识这一大节的重点是充要条件学习简易逻辑知识,主要是为了培养学生进行简单推理的技能,发展学生的思维能力,在这方面,逻辑联结词“或”、“且”、“非”与充要条件的有关内容是十分必要的这一大节的难点是对一些代数命题真假的判断初中阶段,学生只是对简单的推理方法有一定程度的熟悉,并且,相关的技能和能力,主要还是通过几何课的学习获得的,初中代数侧重的是运算的技能和能力,因此,像对代数命题的证明,学生还需要有一个逐步熟悉的过程教学过程:一、复习引入:复习初中学过的命题与逆命题,并举例说明(学生回答,教师整理补充)两个命题,如果第一个命题的条件(或题设)是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫做互逆命题;如果把其中一个命题叫做原命题,那么另一个叫做原命题的逆命题.例如,(1)同位角相等,两直线平行;条件(题设):同位角相等;结论:两直线平行它的逆命题就是:(2)两直线平行,同位角相等二、讲解新课:1引例(3)同位角不相等,两直线不平行;(4)两直线不平行,同位角不相等.比较命题(1)与(3)、(1)与(4)的条件与结论的异同(学生回答,教师整理补充)在命题(1)与命题(3)中,一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,我们称命题(1)与命题(3)互为否命题;在命题(1)与命题(4)中,一个命题的条件和结论分别是另一个命题的结论的否定和条件的否定,我们称命题(1)与命题(4)互为逆否命题;(让学生取名字)思考:由原命题怎么得到逆命题、否命题、逆否命题?(学生回答,教师整理补充)交换原命题的条件和结论,所得的命题是逆命题;同时否定原命题的条件和结论,所得的命题是否命题;交换原命题的条件和结论,并且同时否定,所得的命题是逆否命题.2概括:(1)为原命题 (2)为逆命题 (3)为否命题 (4)为逆否命题反问:若(2)为原命题,则(1)(3)(4)各为哪种命题? 若(3)为原命题,则(1)(2)(4)各为哪种命题? 若(4)为原命题,则(1)(2)(3)各为哪种命题?强调:“互为”的含义3四中命题的形式若p为原命题条件,q为原命题结论(学生回答,教师整理补充)则:原命题:若 p 则 q 逆命题:若 p 则 q 否命题:若 p 则 q 逆否命题:若 q 则 p三、范例例1(课本第P页30例1)把下列命题改写成“若p则q”的形式,并写出它们的逆命题、否命题与逆否命题:(学生回答,教师整理补充)(1) 负数的平方是正数;(2)正方形的四条边相等.分析:关键是找出原命题的条件p和结论q.解:(1)原命题可以写成:若一个数是负数,则它的平方是正数;逆命题:若一个数的平方是正数,则它是负数;否命题:若一个数不是负数,则它的平方不是正数;逆否命题:若一个数的平方不是正数,则它不是负数.另解:原命题可写成:若一个数是负数的平方,则这个数是正数;逆命题:若一个数是正数,则它是负数的平方;否命题:若一个数不是负数的平方,则这个数不是正数;逆否命题:若一个数不是正数,则它不是负数的平方.(2) 原命题可写成:若一个四边形是正方形,则它的四条边相等;逆命题:若一个四边形的四条边相等,则它是正方形;否命题:若一个四边形不是正方形,则它的四条边不相等;逆否命题:若一个四边形的四条边不相等,则它不是正方形.例2设原命题是“当c0时,若ab,则acbc”,写出它的逆命题、否命题与逆否命题,并判断它们的真假注意:“若p则q”形式的命题,也是一种复合命题,其中的p与q,可以是命题,也可以是开语句,例如,命题“若=0,则x,y全为0”,其中的p与q,就是开语句.关键是找出原命题的条件(p)、结论(q),然后适当改写成更明显的形式四、小结:四种命题的概念及其形式,怎样写出一个简单的命题(原命题)的逆命题、否命题、逆否命题五、练习:P31练习:1,2.答案:1.(1)若一个整数的末位是0,则它可以被5整除;(2)若一个点在线段的垂直平分线上,则它与这条线段两个端点的距离相等;(3)若一个式子是等式,则它的两边都乘以同一个数,所得结果仍是等式;(4)若一条直线到圆心的距离不等于半径,则它不是圆的切线.2.(1)可以被5 整除的整数,末位是0;(2)不在线段的垂直平分线上的点与这条线段两个端点的距离不相等;(3)若式子两边都乘以同一个数所得结果不是等式,则这个式子不是等式;(4)若一条直线是圆的切线,则它到圆心的距离等于半径.补充题:写出命题“若 xy= 0 则 x = 0或 y = 0”的逆命题、否命题、逆否命题解:逆命题:若 x = 0或 y = 0 则 xy = 0 否命题:若 xy 0 则 x 0且 y 0 逆否命题:若 x 0且 y 0 则 xy0. 注意: 1为什么称“互为”逆命题(否命题,逆否命题)2要重视对命题的剖析:条件、结论六、作业:课本第33页 习题1.7:1,2.七、板书设计(略)八、课后记:课 题:1.7 四种命题(2)教学目的:1理解四种命题的关系,并能利用这个关系判断命题的真假2理解反证法的基本原理;掌握运用反证法的一般步骤;并能用反证法证明一些命题;3培养勇于探索的精神,勇于创新精神,同时体会事物之间普遍联系的辩证思想教学重点:理解四种命题的关系 教学难点:逆否命题的等价性授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪内容分析:学生在初中数学中,学习过简单的命题(包括原命题与逆命题)知识,掌握了简单的推理方法(包括对反证法的了解)由此,这一大节首先讲述四种命题及其相互关系,并且在初中的基础上,结合四种命题的知识,进一步讲解反证法然后,通过若干实例,讲述了充分条件、必要条件和充要条件的有关知识这一大节的重点是充要条件学习简易逻辑知识,主要是为了培养学生进行简单推理的技能,发展学生的思维能力,在这方面,逻辑联结词“或”、“且”、“非”与充要条件的有关内容是十分必要的(初中数学中有关反证法的内容,要求比较低,并且基本没有涉及代数命题到高中数学学习的需要,结合四种命题及其关系进行讲授 学习反证法,一是要注意加强对有关代数命题的训练,二是教学要求要适当,对反证法的掌握,还有待于随着学习的深入,逐步提高教科书中反证法涉及代数命题的例、习题,是属于初中范围的,比较简单因此,这些题目都可以用直接的方法进行证明,不一定用反证法,选取这些题,主要是为了让学生熟悉反证法)反证法在初中教科书中指出:从命题结论的反面出发,引出矛盾,从而证明命题成立,这样的证明方法叫做反证法教学过程:一、复习引入:四种命题及其形式原命题:若p则q; 逆命题:若q则p;否命题:若p则q; 逆否命题:若q则p.二、讲解新课:1四种命题的相互关系互逆命题、互否命题与互为逆否命题都是说两个命题的关系,若把其中一个命题叫做原命题时,另一个命题就叫做原命题的逆命题、否命题与逆否命题.因此,四种命题之间的相互关系,可用右下图表示:2四种命题的真假关系一个命题的真假与其他三个命题的真假有如下三条关系:、原命题为真,它的逆命题不一定为真、原命题为真,它的否命题不一定为真、原命题为真,它的逆否命题一定为真3反证法:要证明某一结论A是正确的,但不直接证明,而是先去证明A的反面(非A)是错误的,从而断定A是正确的即反证法就是通过否定命题的结论而导出矛盾来达到肯定命题的结论,完成命题的论证的一种数学证明方法4反证法的步骤:(1)假设命题的结论不成立,即假设结论的反面成立(2)从这个假设出发,通过推理论证,得出矛盾(3)由矛盾判定假设不正确,从而肯定命题的结论正确注意:可能出现矛盾四种情况:与题设矛盾;与反设矛盾;与公理、定理矛盾在证明过程中,推出自相矛盾的结论三、范例例1判断以下四种命题的真假原命题:若四边形ABCD为平行四边形,则对角线互相平分 真逆命题:若四边形ABCD对角线互相平分,则它为平行四边形; 真否命题:若四边形ABCD不是为平行四边形,则对角线不平分; 真逆否命题:若四边形ABCD对角线不平分,则它不是平行四边形; 真归纳小结:(学生回答,教师整理补充)(1)原命题为真,它的逆命题不一定为真;(2)原命题为真,它的否命题不一定为真;(3)原命题为真,它的逆否命题一定为真结论:两个互为逆否的命题同真或同假(如原命题和它的逆否命题,逆命题和否命题),其余情况则不一定同真或同假(如原命题和逆命题,否命题和逆否命题等),这时称互为逆否的两个命题等价,即原命题逆否命题例2(课本第32页例2)设原命题是“当c0时,若ab,则acbc”,写出它的逆命题、否命题与逆否命题,并分别判断它们的真假.分析:“当c0时”是大前提,写其他命题时应该保留,原命题的条件是ab,结论是acbc.解:逆命题:当c0时,若acbc,则ab.它是真命题;否命题:当c0时,若ab,则acbc.它是真命题;逆否命题:当c0时,若acbc,则ab.它是真命题.练习:课本第32页 练习:1,2.答案:1.(1)正确;(2)正确.2.(1)逆命题:两个全等三角形的三边对应相等.逆命题为真;否命题:三边不对应相等的两个三角形不全等.否命题为真;逆否命题:两个不全等的三角形的三边不对应相等.逆否命题为真.(2) 逆命题:若a+cb+c,则ab.逆命题为真.否命题:若ab,则a+cb+c.否命题为真.逆否命题:若a+cb+c,则ab.逆否命题为真.例3(课本第32页例3)用反证法证明:如果ab0,那么.证明:假设不大于,则或者0,b0,ab0矛盾,.证法二(直接证法),ab0,a - b0即,例4(课本第33页例4)用反证法证明:圆的两条不是直径的相交弦不能互相平分.已知:如图,在O中,弦AB、CD交于P,且AB、CD不是直径.求证:弦AB、CD不被P平分.分析:假设弦AB、CD被P平分,连结OP后,可推出AB、CD都与OP垂直,则出现矛盾.证明:假设弦AB、CD被P平分,由于P点一定不是圆心O,连结OP,根据垂径定理的推论,有OPAB,OPCD,即过点P有两条直线与OP都垂直,这与垂线性质矛盾. 弦AB、CD不被P平分.四、小结:四种命题之间的相互关系和真假关系 反证法的基本原理及其四个步骤五、练习:课本第33页 练习:1,2.提示:1.设b2-4ac0,则方程没有实数根,或方程有两个相等的实数根,得出矛盾.2.设B900,则C+B1800,得出矛盾.补充题:1命题“若 x = y 则 |x| = |y|”写出它的逆命题、否命题、逆否命题,并判断它的真假解:逆命题:若 |x| = |y| 则 x = y (假,如 x = 1, y = -1) 否命题:若 x y 则 |x| |y| (假,如 x = 1, y = -1) 逆否命题:若 |x| |y| 则 x y (真)2写出命题:“若 xy = 6则 x = 3且 y = 2”的逆命题否命题逆否命题,并判断它们的真假解:逆命题:若 x = 3 且 y = 2 则 x + y = 5 (真) 否命题:若 x + y 5 则 x 3且y2 (真) 逆否命题:若 x 3 或y2 则 x + y 5 (假)六、作业:课本第33-34页 习题17中3,4 , 5. 补充题:1若a2能被2整除,a是整数,求证:a也能被2整除.证:假设a不能被2整除,则a必为奇数,故可令a=2m+1(m为整数),由此得a2=(2m+1)2=4m2+4m+1=4m(m+1)+1,此结果表明a2是奇数,这与题中的已知条件(a2能被2整除)相矛盾,a能被2整除.七、板书设计(略)八、课后记:小故事:三个古希腊哲学家,由于争论和天气炎热感到疲倦了,于是在花园里的一棵大树下躺下来休息一会,结果都睡着了.这时一个爱开玩笑的人用炭涂黑了他们的前额.三个人醒来以后,彼此看了看,都笑了起来.但这并没引起他们之中任何一个人的担心,因为每个人都以为是其他两人在互相取笑.这时其中有一个突然不笑了,因为他发觉自己的前额也给涂黑了.那么他是怎样觉察到的呢?你能想出来吗?答案:为了方便,用甲、乙、丙分别代表三个科学家,并不妨设甲已发觉自己的脸给涂黑了.那么甲这样想:“我们三个人都可以认为自己的脸没被涂黑,如果我的脸没被涂黑,那么乙能看到(当然对于丙也是一样),乙既然看到了我的脸没给涂黑,同时他又认为他的脸也没给涂黑,那么乙就应该对丙的发笑而感到
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年天津市合同监督管理办法已经修订
- 油墨厂二甲基甲酰胺存储规章
- 九年级语文下册 第四单元说课稿 (新版)新人教版
- 2024-2025学年高中历史 第六单元 现代世界的科技与文化 第29课 百花齐放 百家争鸣说课稿 岳麓版必修3
- 第九节 无人机自动跟随说课稿-2025-2026学年初中信息技术甘教版2022八年级下册-甘教版2022
- 中医学员考试题及答案大全
- 泰安市检察院招聘考试真题2024
- 福建专升本语文总结(3篇)
- 2025年上海人民警察招聘考试申论题库含答案详解
- 宠物猫寄养与宠物保险咨询服务合同
- 中级消防员维保培训课件
- 小儿推拿进修总结汇报
- 2025公司应急预案演练计划(5篇)
- 医疗机构医院全员培训制度
- 2025仓库保管员试题及答案
- 生猪养殖场实施方案
- 矛盾纠纷化解培训课件
- 2025年成人高考语文试题及答案
- DB11-T 2103.14-2025 社会单位和重点场所消防安全管理规范 第14部分:电动汽车充电站
- 病毒感染课件
- 涉案财物处置培训
评论
0/150
提交评论