



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
哲觉中学八年级数学学科导学案3线段的垂直平分线(课时2) 主备人 孔萌一、学习目标:1证明三角形三边垂直平分线交于一点2.经历猜想、探索,能够作出符合条件的三角形3.经历探索、猜测、证明的过程,进一步发展推理证明意识和能力体验解决问题的方法,发展实践能力和创新意识 4.学会与他人合作,并能与他人交流思维的过程和结果 二、学习重点、难点: 能够证明与线段垂直平分线相关的结论 已知底边和底边上的高,能利用尺规作出等腰三角形证明三线共点。三、学习过程:1:情景引入 活动内容:尺规作图作三条边的垂直平分线。活动过程:(1)问:利用尺规作三角形三条边的垂直平分线,当作完此题时你发现了什么? 三角形三边的垂直平分线( ),这一点到三角形三个顶点的距离( )。(2)剪一个三角形纸片,通过折叠找出每条边的垂直平分线,观察这三条垂直平分线,你是否发现同样的结论?与同伴交流2:例题解析已知:在ABC中,设AB、BC的垂直平分线交于点P,连接AP,BP,CP求证:P点在AC的垂直平分线上证明:点P在线段AB的垂直平分线上,PA=PB(线段垂直平分线上的点到线段两个端点的距离相等)同理PB=PCPA=PCP点在AC的垂直平分线上(到线段两个端点距离相等的点.在这条线段的垂直平分线上)AB、BC、AC的垂直平分线相交于点P设问:“从证明三角形三边的垂直平分线交于一点,你还能得出什么结论?” 定理三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等3.引申拓展 (1)已知三角形的一条边及这条边上的高,你能作出三角形吗?如果能,能作几个?所作出的三角形都全等吗?(2)已知等腰三角形的底边,你能用尺规作出等腰三角形吗?如果能,能作几个?所作出的三角形都全等吗? (3)已知等腰三角形的底边及底边上的高,你能用尺规作出等腰三角形吗?能作几个?由学生思考可得:(1)已知三角形的一条边及这条边上的高,能作出三角形,并且能作出无数多个,如下图:已知:三角形的一条边a和这边上的高h求作:ABC,使BC=a,BC边上的高为h (4)如果底边和底边上的高都一定,这样的等腰三角形应该只有两个,并且它们是全等的,分别位于已知底边的两侧(5)例题学习已知底边及底边上的高,求作等腰三角形已知:线段a、h求作:ABC,使AB=AC,BC=a,高AD=h作法:(6)做一做:课本第25页。4.动手操作(1)例题:已知直线 l 和 l 上一点 P,用尺规作 l 的垂线,使它经过点 P.学生先独立思考完成,然后交流:说出做法并解释作图的理由。(2)拓展:如果点 P 是直线 l 外一点,那么怎样用尺规作 l 的垂线,使它经过点 P 呢?说说你的作法,并与同伴交流. 5.随堂练习::习题1.8第1、2题。6.课时小结 本节课通过推理证明了“到三角形三个顶点距离的点是三角形三条边的垂直平分线的交点,及三角形三条边的垂直平分线交于一点”的结论,并能根据此结论“已知等腰三角形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 锅炉设备试压工压力容器操作特项考核试卷及答案
- 非典捐赠协议书
- 钟表及计时仪器制造工跨部门项目协调考核试卷及答案
- 隧道工消防考核试卷及答案
- 公司速录师岗位职业健康及安全技术规程
- 2026届广东省云浮云城区五校联考七年级数学第一学期期末调研试题含解析
- 河北省保定市安国市2026届九年级数学第一学期期末监测模拟试题含解析
- 2025家居用品(沙发)购销合同
- 2025房屋租赁终止合同模板
- 2025房屋租赁合同范本范文
- 2025少先队基础知识题库(含答案)
- 人教版九年级物理上-各单元综合测试卷含答案共五套
- 三折页设计课件
- 文科物理(兰州大学)学习通网课章节测试答案
- 人教版高二数学(上)选择性必修第一册1.2空间向量基本定理【教学设计】
- 防诈骗消防安全知识培训课件
- 2025年安徽省公务员录用考试《行测》真题及答案
- 2025中医四大经典知识竞赛真题模拟及答案
- 中国医院质量安全管理 第4-6部分:医疗管理 医疗安全(不良)事件管理 T∕CHAS 10-4-6-2018
- 含分布式电源的配电网潮流计算毕业设计说明
- TPX6111B数显卧式铣镗床使用手册
评论
0/150
提交评论