




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
三角函数与三角恒等变换习题2一、 填空题1._.2._.3. 已知,则的值为_.4. 已知,则_.5. 将函数ysin2x的图象向左平移个单位, 再向上平移1个单位,所得图象的函数解析式是_.6. 已知函数是R上的偶函数,则_.7. 函数的单调递减区间为_.8. 已知函数,且,则函数的值域是_.9. 若,则的值是_.10. 已知都是锐角,且,则的值是_.11. 给出下列四个命题,其中不正确命题的序号是_. 若,则,kZ; 函数的图象关于对称; 函数 (xR)为偶函数; 函数ysin|x|是周期函数,且周期为2.12. 已知函数的图象如图所示,则f(0)_.13. 若,且,则_.14. 已知函数(xR,0)的最小正周期为.将yf(x)的图象向左平移个单位长度,所得图象关于y轴对称,则的最小值是_.二、 解答题(本大题共6小题,共90分.解答后写出文字说明、证明过程或演算步骤)15. (本小题满分14分)如图是表示电流强度I与时间t的关系在一个周期内的图象.(1) 写出的解析式;(2) 指出它的图象是由Isint的图象经过怎样的变换而得到的.16. (本小题满分14分)化简.17. (本小题满分14分)已知函数ysinxcosxsinxcosx,求y的最大值、最小值及取得最大值、最小值时x的值.18. (本小题满分16分)设,曲线和有4个不同的交点.(1) 求的取值范围;(2) 证明这4个交点共圆,并求圆的半径的取值范围.19. (本小题满分16分)函数f(x)12a2acosx2sin2x的最小值为g(a),aR.(1) 求g(a)的表达式;(2) 若g(a),求a及此时f(x)的最大值.20. (本小题满分16分)已知定义在区间上的函数yf(x)的图象关于直线对称,当x时,函数f(x)sinx.(1) 求的值;(2) 求yf(x)的函数表达式;(3) 如果关于x的方程f(x)a有解,那么在a取某一确定值时,将方程所求得的所有解的和记为Ma,求Ma的所有可能取值及相对应的a的取值范围.三角函数与三角恒等变换习题21. 2. 3.【解析】原式 4. 2 5. y2cos2x 6. 7.(kZ) 【解析】 sin0,且y是减函数, 2k2x2k,(kZ), x(kZ).8. 【解析】ysinxcosx2sin,又x sin, y,2.9. 【解析】tan, cos2sin210. 【解析】由题意得cos,sin(). sinsin()sin()coscos()sin.11. 12. 13.【解析】tantan(), tan(2)tan(). (,),且tan(1,0), , 2 2.14. 【解析】由已知,周期为, 2.则结合平移公式和诱导公式可知平移后是偶函数,sincos2x,故min=.15. (1) I300sin.(2) IsintIsin Isin I300sin.16. 原式sin6cos48cos24cos12=17. 令sinxcosxt.由sinxcosxsin,知t, sinxcosx,t,.所以yt(t1)21,t,.当t1,即2sin1,x2k或x2k(kZ)时,ymin1;当t,即sin, x2k(kZ)时,ymax.18. (1) 解方程组 故两条已知曲线有四个不同的交点的充要条件为 0, 0.(2) 设四个交点的坐标为(xi,yi)(i1,2,3,4),则2cos(,2)(i1,2,3,4).故此四个交点共圆,并且这个圆的半径r.19. f(x)12a2acosx2sin2x12a2acosx2(1cos2x)2cos2x2acosx12a212a(aR).(1) 函数f(x)的最小值为g(a). 当1,即a2时,由cosx1,得g(a)212a1; 当11,即2a2时,由cosx,得g(a)12a; 当1,即a2时,由cosx1,得g(a)212a14a.综上所述,(2) g(a), 2a2, 12a,得a24a30, a1或a3(舍).将a1代入f(x)212a,得f(x)2. 当cosx1,即x2k(kZ)时,f(x)max5.20. (1) ff()sin0,ffsin.(2) 当x时,f(x)fsincosx. f(x)(3) 作函数f(x)的图象(如图),显然,若f(x)a有解,则a0,1. 当0a时,f(x)a有两解,且, x1x2, Ma; 当a时,f(x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 年度安全培训次数课件
- 威远驾驶员安全培训课件
- 威海食品安全培训计划课件
- 年前电力安全培训内容课件
- 工业探伤工安全培训记录课件
- 2024年中石化胜利石油工程公司招聘考试真题
- 2024年河南洛阳市洛宁县公益性岗位招聘考试真题
- 委托安全培训课件
- 平面与圆球相交课件
- 徐州事业单位笔试真题2025
- 辽宁省沈阳市2024-2025学年八年级上学期期末考试英语试题(含答案无听力原文及音频)
- 小班晨间活动体能大循环
- 绿化小型工程合同范例
- 涂层材料与叶轮匹配性研究-洞察分析
- 讯问笔录课件教学课件
- 《建筑工程设计文件编制深度规定》(2022年版)
- 2.3地表形态与人类活动课件湘教版(2019)高中地理选择性必修一
- 病例报告表(CRF)模板
- 辽宁省名校联盟2024-2025学年高三上学期10月联考数学试卷
- 广东省珠海市香洲区文园中学2024-2025学年七年级上学期10月月考数学试卷(无答案)
- 2019年医疗器械体外诊断与病理诊断行业分析报告
评论
0/150
提交评论