数学北师大版八年级下册等腰三角形与等边三角形.doc_第1页
数学北师大版八年级下册等腰三角形与等边三角形.doc_第2页
数学北师大版八年级下册等腰三角形与等边三角形.doc_第3页
数学北师大版八年级下册等腰三角形与等边三角形.doc_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

年级_八年级_科目 数学 下 册第 1 章第1节第2课时 主备教师: 谭海 备课时间: 2017 年 2 月 12 日 教学课题第一章 三角形的证明1. 等腰三角形(二)课型新课课时2教学目标知识目标:运用等腰三角形的性质定理,探索发现猜想证明等腰三角形中相等的线段和等边三角形的性质,进一步熟悉证明的基本步骤和书写格式,体会证明的必要性.能力目标:经历“探索发现猜想证明”的过程,让学生进一步体会证明是探索活动的自然延续和必要发展,发展学生的初步的演绎逻辑推理的能力;在图形的观察中,揭示等腰三角形的本质:对称性,发展学生的几何直觉.情感目标:体验数学活动中的探索与创造,在证明的书写中感受数学的严谨性教学重点用综合法证明等腰(等边)三角形的一些性质教学难点 等腰三角形的性质定理运用与证明的基本步骤和书写格式教法与 学法引导法教具与 媒体ppt与互动平板教 学 过 程教学环节及时间教师活动学生活动教学意图授课教师 二次备课第一环节:温故知新,引入新课引导学生在回忆上节课等腰三角形性质的基础上,并要求其写出几何表达,然后提出问题:在等腰三角形中作出一些线段(如角平分线、中线、高等),你能发现其中一些相等的线段吗?你能证明你的结论吗?回忆上节课等腰三角形性质的基础上,思考问题.(写出几何表达,并画出图形)1、 等腰三角形的性质是什么?2、 等腰三角形的一个内角为700,则顶角为 。等腰三角形的一个外角为1000,则其顶角为 。 回顾性质,既为后续研究判定提供了基础;同时,直接提出新的问题,过渡自然,引入本课研究内容,而新的问题是原有性质的一个自然拓广,有助于提高学生提出问题的能力.第二环节:自主探究引导学生:在等腰三角形中自主作出一些线段(如角平分线、中线、高等),观察其中有哪些相等的线段,并尝试给出证明.活动中,教师应注意给予适度的引导,提出问题:你可能得到哪些相等的线段?你如何验证你的猜测?你能证明你的猜测吗?试作图,写出已知、求证和证明过程;还可以有哪些证明方法?在等腰三角形中自主作出一些线段(如角平分线、中线、高等),观察其中有哪些相等的线段,并尝试给出证明.自主探究和同伴的交流,在直观猜测、测量验证的基础上探究出:等腰三角形两个底角的平分线相等;等腰三角形腰上的高相等;等腰三角形腰上的中线相等并对这些命题给予多样的证明.“等腰三角形两底角的平分线相等”,学生得到了下面的证明方法:已知:如图,在ABC中,AB=AC,BD、CE是ABC的角平分线求证:BD=CE证法1:AB=AC,ABC=ACB(等边对等角)1=ABC,2=ABC,1=2在BDC和CEB中,ACB=ABC,BC=CB,1=2BDCCEB(ASA)BD=CE(全等三角形的对应边相等) 证法2:证明:AB=AC,ABC=ACB又3=4在ABC和ACE中,3=4,AB=AC,A=AABDACE(ASA)BD=CE(全等三角形的对应边相等)让学生再次经历“探索发现猜想证明”的过程,进一步体会证明的必要性,并进行证明,从中进一步体会证明过程,感受证明方法的多样性.第三环节:经典例题 变式练习引导学生思考:把底角二等份的线段相等如果是三等份、四等份结果如何呢?从而引出课本p5“议一议”.(这里与证明等腰三角形两底角的角平分线相等类似,从特殊到一般,引导学生去体会,理解等腰三角形的对称性)思考:课本p5“议一议”的等腰三角形ABC中,(1)如果ABD=ABC,ACE=ACB呢?由此,你能得到一个什么结论?(2)如果AD=AC,AE=AB,那么BD=CE吗?如果AD=AC,AE=AB呢?由此你得到什么结论?提高学生类比能力、变式能力、问题拓广能力,发展学生学习的自主性.第四环节:拓展延伸,探索等边三角形性质引导学生在等腰三角形性质定理的基础上,思考等边三角形的特殊性质:.思考并完成等边三角形的特殊性质的证明:等边三角形三个内角都相等并且每个内角都等于60.已知:如图,ABC中,AB=BC=AC求证:A=B=C=60.证明:在ABC中,AB=AC,B=C(等边对等角)同理:C=A,A=B=C(等量代换) 又A+B+C180(三角形内角和定理),A=B=C60运用等腰三角形的性质,去证明等边三角形的性质.培养学生的从一般到特殊的思想.第五环节: 随堂练习 及时巩固 布置随堂练习及一道中考真题完成p6随堂练习1,2BECDA中考真题:如图,ABC中,AB=AC,A=36,AC的垂直平分线交AB于E,D为垂足,连接CE.(1) 求ECD的度数;(2) 若CE=5,求BC的长.第六环节:探讨收获 课时小结引导学生用自己的方法归纳总结本节课所学到的知识和方法.思考:我的收获?和我不明白的问题?书面作业布置必

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论