平行四边形综合练习题.doc_第1页
平行四边形综合练习题.doc_第2页
平行四边形综合练习题.doc_第3页
平行四边形综合练习题.doc_第4页
平行四边形综合练习题.doc_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学生姓名年级初二授课日期教师学科数学上课时段教学步骤及教学内容四边形性质和判定方法1、平行四边形性质:平行四边形对边相等;平行四边形对角相等;平行四边形对角线互相平分平行四边形的判定:(1)两组对边分别平行的四边形是平行四边形(2)两组对角分别相等的四边形是平行四边形(3)一组对边平行且相等的四边形是平行四边形(4)从对角线看:对角钱互相平分的四边形是平行四边形(5)从角看:两组对角分别相等的四边形是平行四边形。2、矩形:有一个角是直角的平行四边形叫做矩形,也说是长方形矩形的性质:矩形的四个角都是直角;矩形的对角线相等矩形的对角线相等且互相平分。特别提示:直角三角形斜边上的中线等于斜边的一半矩形具有平行四边形的一切性质矩形的判定方法有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形有三个角是直角的四边形是矩形3、菱形:有一组邻边相等的平行四边形叫做菱形(菱形是平行四边形:一组邻边相等)性质:菱形的四条边都相等菱形的两条对角线互相垂直平分,并且每一条对角线平分一组对角。菱形的判定方法:一组邻边相等的平行四边形是菱形对角线互相垂直平分的平行四边形是菱形对角线互相垂直平分的四边形是菱形四条边都相等的四边形是菱形4、正方形:定义:四条边都相等,四个角都是直角的四边形是正方形。性质:正方形既有矩形的性质,又有菱形的性质。正方形是轴对称图形,其对称轴为对边中点所在的直线或对角线所在的直线,也是中心对称图形,对称中心为对角线的交点。5、梯形:定义:一组对边平行,另一组对边不平行的四边形叫做梯形。等腰梯形:两腰相等的梯形是等腰梯形。直角梯形:有一个角是直角的梯形是直角梯形等腰梯形的性质:等腰梯形是轴对称图形,上下底的中点连线所在的直线是对称轴,等腰梯形同一底边上的两个角相等。等腰梯形的两条对角线相等。等腰梯形的判定定理同一底上两个角相等的梯形是等腰梯形等腰梯形的判定方法:先判定它是梯形,再用两腰相等或同一底上的两个角相等来判定它是等腰梯形。解决梯形问题常用的方法:1、“平移腰”把梯形分成一个平行四边形和一个三角形2、“作高”:使两腰在两个直角三角形中3、平移对角线:使两条对角线在同一个三角形中4、延腰构造具有公共角的两个三角形5、等积变形:连接梯形上底一端点和另一腰中点,并延长与下底延长线交于一点,构成三角形。专题讲解:1、在ABCD中,已知A=60,求其他各个内角的度数。2、在ABCD中,已知AB:BC=3:5,且周长等于48,求这个平行四边形四条边的长。3、如图,在ABCD中,DEAB,E是垂足,如果C=40,求A与ADE的度数。4、如图,ABCD中,DEAB于E,DFBC于F,若ABCD的周长为48,DE=5,DF=10。 求ABCD的面积。5、在ABCD中,若AB=70,求A、B、C、D的度数。6、如图,ABCD的周长为60,AOB的周长比BOC大8,求AB、BC的长。7、如图,在ABCD中,已知点E和点F分别为AD、BC的中点,连结CE和AF,试说明四边形AFCE是平行四边形。8、如图,在ABCD中,已知点M和点N分别为ED、FB的中点,试说明四边形ENFM为平行四边形。9、已知四边形ABCD,仅从下列条件中两个加以组合,能否得出四边形ABCD是平行四边形的结论? ABCD BCAD AB=CD BC= AD A=C B=D10、在下列命题中,真命题是()两条对角线相等的四边形是矩形两条对角线互相垂直的四边形是菱形两条对角线互相平分的四边形是平行四边形两条对角线互相垂直且相等的四边形是正方形11、已知菱形的两条对角线长为10cm和24cm, 那么这个菱形的周长为_, 面积为_.12、 如图,矩形ABCD的对角线相交于点O,OFBC,CEBD,OE:BE=1:3,OF=4,求ADB的度数和BD的长。13、 如图所示,矩形ABCD中,M是BC的中点,且MAMD,若矩形的周长为36cm,求此矩形的面积。14、 已知:如图,ABC中,BAC的平分线交BC于点D,E是AB上一点,且AE=AC,EFBC交AD于点F,求证:四边形CDEF是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论