总结求逆矩阵方法.doc_第1页
总结求逆矩阵方法.doc_第2页
总结求逆矩阵方法.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

总结求逆矩阵方法直接算会死人的。根据矩阵特点用不用的分解,写成几个例程,每次实验之前进行尝试,根据尝试结果在算法里决定里决定用哪个。irst 我想问: 1.全阶矩阵A的求逆运算inv(A) 和稀疏矩阵B(阶数和a一样) 的求逆运算inv(B)是不是采取一样的方法啊?也就是说他们的 计算量是不是一样的啊?不会因为是稀疏矩阵就采取特殊的 方法来处理求逆吧? 我电脑内存256M ,做4096*4096的矩阵求逆还可以,上万阶的 就跑不动了 稀疏存储方式会减少不必要的计算,虽然原理还是一样,不过 计算量大大减少了。 2.如果一个矩阵C非零元素都集中在主对角线的周围,那么对C求逆最好 应该采用什么样的方法最好呢? 一般还是用LU分解前后迭代的方法,如果矩阵对角占优就更好办了。 只不过还是需要稀疏存储。 稀疏矩阵的逆一般不会是稀疏矩阵,所以对高阶的稀疏矩阵求逆, 是不可行的,对1万阶的全矩阵需要的内存差不多已经达到了pc的 极限,我想最好的办法就是迭代,既然是稀疏,乘法的次数就有限, 效率还是很高的。 不过求逆运算基本上就是解方程,对稀疏矩阵,特别是他那种基本上非零元素都在对角线附近的矩阵来说,LU分解不会产生很多的注入元,所以用LU分解解方程方法的方法是可行的。 如果用迭代法,好像也就是共轭梯度法了。 C的资源网络上有很多 google一下 或者到,上找找 或者用IMSL for C 或者用Lapack 或者用Matlab+C混合编程 有现成代码,但要你自己找了 也可以使用程序库 second 30,000*30,000的稀疏矩阵求逆如何实现? 试试基于krylov子空间方法的算法吧。 如arnoldi和GMRES方法。 matlab中有函数可以直接调用。 直接help gmres就可以了。 如果效果还不好 。 就用用预处理技术。 比如不完全lu预处理方法。等等。 各种各样的预处理+GMRES是现在解决大规模稀疏矩阵的主力方法。 维数再多还是用不完全LU分解预处理+CG or Gmres 我一个同学这么求过200W阶的矩阵 求逆一般是不可取的,无需多说。但稀疏矩阵的直接解法还是不少的。基本上都是对矩阵进行重新排序以期减少填充或运算量。 在matlab里面,有许多算法可以利用: colamd, colmmd, colperm, spparms, symamd, symmmd, symrcm. 根据是否对称,采用LU分解或者chol分解。 这些算法在internet上搜一下,很多都有相应的C或fortran版本。 稀疏矩阵的存储最常见的是压缩列(行)存储,最近发现一种利用hash表来存储的,其存取复杂度是O(1),很是不错。有幸趣的可以看看下面网页咯,作者提供了源程序。 事实上Hash表存储的效率也跟Hash算法有关,弄不好的话,不见得比直接按行或者列 顺序检索快。而且规模越大,效率肯定越来越低。 rmatik.hs-bremen.de/brey/ 对称正定的稀疏矩阵很好办啊,用LU分解就可以了。 如果维数实在太大,比如超过104量级,那就只能用 共轭梯度法之类的迭代法求解了。 好多文献中用Cholesky分解处理的,好像结果还可以 你觉得LL分解不会破坏矩阵的稀疏性么如果矩阵不是带状的话? 而且数值稳定性也有问题。 对于一些注入元不是很多的矩阵这应该是个好办法。 但是对于有些矩阵,LU分解后可能就把整个矩阵充满了。 这是比较郁闷的事情。 third 带状矩阵的逆有快速算法吗? 我觉得这个说法不对,至少在Matlab里面,使用稀疏矩阵求逆对于效率的提高还是很显著的。利用稀疏特性,很多对于零元素的操作就省掉了。如果原矩阵还是对称的,可以考虑三角分解,把单位阵的列向量作为右端项,求解得到的是对应的逆阵的列向量。 但是,按照前辈的说法,“绝大部分情况下,求逆阵肯定不是必需的”,这一说法我现在还是挺赞同的。 至少, 一般我们不会在有限元求解或者普通的线性方程组求解的时候

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论