



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
18.2.3 正方形一、教学目的1掌握正方形的概念、性质和判定,并会用它们进行有关的论证和计算2理解正方形与平行四边形、矩形、菱形的联系和区别,通过正方形与平行四边形、矩形、菱形的联系的教学对学生进行辩证唯物主义教育,提高学生的逻辑思维能力 二、重点、难点1教学重点:正方形的定义及正方形与平行四边形、矩形、菱形的联系 2教学难点:正方形与矩形、菱形的关系及正方形性质与判定的灵活运用 三、例题的意图分析本节课安排了三个例题,例1是教材P111的例4,例2与例3都是补充的题目其中例1与例2是正方形性质的应用,在讲解时,应注意引导学生能正确的运用其性质例3是正方形判定的应用,它是先判定一个四边形是矩形,再证明一组邻边,从而可以判定这个四边形是正方形随后可以再做一组判断题,进行练习巩固(参看随堂练习1),为了活跃学生的思维,也可以将判断题改为下列问题让学生思考:对角线相等的菱形是正方形吗?为什么?对角线互相垂直的矩形是正方形吗?为什么?对角线垂直且相等的四边形是正方形吗?为什么?如果不是,应该加上什么条件?能说“四条边都相等的四边形是正方形”吗?为什么?说“四个角相等的四边形是正方形”对吗?教学设计一、课堂引入1创设情景一:由菱形得到一个正方形(课件演示)情景二:由矩形得到一个正方形(课件演示)二、活动一:正方形定义1、正方形定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形指出:正方形是在平行四边形这个大前提下定义的,其定义包括了两层意: (1)有一组邻边相等的平行四边形 (菱形)(2)有一个角是直角的平行四边形 (矩形)2、完成图表,理清平行四边形,矩形,菱形,正方形关系三、活动二正方形有什么性质?【问题】正方形有什么性质?由正方形的定义可以得知,正方形既是有一组邻边相等的矩形,又是有一个角是直角的菱形所以,正方形具有矩形的性质,同时又具有菱形的性质四、活动三:正方形对称性五、例习题分析例1(教材P111的例4) 求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形已知:四边形ABCD是正方形,对角线AC、BD相交于点O(如图)求证:ABO、BCO、CDO、DAO是全等的等腰直角三角形证明: 四边形ABCD是正方形, AC=BD, ACBD,AO=CO=BO=DO(正方形的两条对角线相等,并且互相垂直平分)ABO、BCO、CDO、DAO都是等腰直角三角形,并且 ABO BCOCDODAO尝试练习:正方形具有而矩形不一定具有的性质是( ) A、四个角相等. B、对角线互相垂直平分 C、对角互补. D、对角线相等.2、正方形具有而菱形不一定具有的性质( ) A、四条边相等. B、对角线互相垂直平分. C、对角线平分一组对角. D、对角线相等. DA例2 已知:如图,正方形ABCD的对角线相交于点O,M、N在OB和OC上,且MNBC,连结DN、MC,试猜想DN与MC有什么关系?并证明你的猜想。NMOCB答:DNMC DNMC证明:四边形ABCD是正方形OCOD , COD=COB=90 1BCO45又MNABOMN1BCOONM45 OMONCOMDON(SAS)DNMC(2)由COMDON得2=3又3+CMO=902+CMO=90DHM=90DNMC长见识数一数图中正方形的个数,你发现了什么?()个 ()个 ()个 ()个多多六、课后练习1已知:如图,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且DE=BF求证:EAAF2已知:如图,ABC中,C=90,CD平分ACB,DEBC于E,DFAC于F求证:四边形CFDE是正方形3已知:如图,正方形ABCD中,E为BC上一点,AF平分DAE交CD于F,求证:AE=BE+DF(补充)已知:如图,正方形ABCD中,对角线的交点为O,E是OB上的一点,DGAE于G,DG交OA于F求证:OE=OF 分析:要证明OE=OF,只需证明AEODFO,由于正方形的对角线垂直平分且相等,可以得到AOE=DOF=90,AO=DO,再由同角或等角的余角相等可以得到EAO=FDO,根据ASA可以得到这两个三角形全等,故结论可得 证明: 四边形ABCD是正方形, AOE=DOF=90,AO=DO(正方形的对角线垂直平分且相等)又 DGAE, EAO+AEO=EDG+AEO=90 EAO=FDO AEO DFO OE=OF 例3 (补充)已知:如图,四边形ABCD是正方形,分别过点A、C两点作l1l2,作BMl1于M,DNl1于N,直线MB、DN分别交l2于Q、P点求证:四边形PQMN是正方形分析:由已知可以证出四边形PQMN是矩形,再证ABMDAN,证出AM=DN,用同样的方法证AN=DP即可证出MN=NP从而得出结论证明: PNl1,QMl1, PNQM,PNM=90 PQNM, 四边形PQMN是矩形 四边形ABCD是正方形 BAD=ADC=90,AB=AD=DC(正方形的四条边都相等,四个角都是直角) 1+2=90又 3+2=90, 1=3 ABMDAN AM=DN 同理 AN=DP AM+AN=DN+DP即 MN=PN 四边形PQMN是正方形(有一组邻边相等的矩形是正方形)六、随堂练习1正方形的四条边_ _,四个角_ _,两条对角线_ _2下列说法是否正确,并说明理由对角线相等的菱形是正方形;( )对角线互相垂直的矩形是正方形;( )对角线垂直且相等的四边形是正方形;( )四条边都相等的四边形是正方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年奥特莱斯行业当前发展趋势与投资机遇洞察报告
- 2025年别墅行业当前发展趋势与投资机遇洞察报告
- 2025年额温枪行业当前发展现状及增长策略研究报告
- 2025年专业技术人员继续教育公需科目考试试题及答案
- (2025)辐射安全与防护培训考试题库及参考答案
- 2025年贵州省六盘水市国家公务员公共基础知识预测试题含答案
- 2025年保育员(高级)操作证考试试题及答案
- 2024年湖南街道解放里社区工作人员考试模拟试题及答案
- 摩托车基础知识培训课件
- 2025至2030年中国化妆工具套装市场竞争态势及行业投资潜力预测报告
- 2025年住培结业考试题库及答案
- 写字楼租赁合同法律风险及防范指南
- DB42∕T 2151-2023 应急物资储备库建设规范
- 精神患者家属健康教育讲座
- 养老机构医养结合交流合作总结范文
- 分包招采培训课件
- 神经刺激器行业深度调研及发展项目商业计划书
- 公司全员销售管理办法
- 考试真题及答案解析注册安全工程师
- 丙酮出入库管理制度
- 工贸行业重大事故隐患判定标准安全试题及答案
评论
0/150
提交评论