



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一、目标与要求1.感受生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义,通过解决简单的实际问题,使学生自发地寻找不等式的解,会把不等式的解集正确地表示到数轴上;2.经历由具体实例建立不等模型的过程,经历探究不等式解与解集的不同意义的过程,渗透数形结合思想;3.通过对不等式、不等式解与解集的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识;让学生充分体会到生活中处处有数学,并能将它们应用到生活的各个领域。二、知识框架三、重点理解并掌握不等式的性质;正确运用不等式的性质;建立方程解决实际问题,会解“axb=cx+d”类型的一元一次方程;寻找实际问题中的不等关系,建立数学模型;一元一次不等式组的解集和解法。四、难点一元一次不等式组解集的理解;弄清列不等式解决实际问题的思想方法,用去括号法解一元一次不等式;正确理解不等式、不等式解与解集的意义,把不等式的解集正确地表示到数轴上。五、知识点、概念总结1.不等式:用符号“”“”“ ”“”表示大小关系的式子叫做不等式。2.不等式分类:不等式分为严格不等式与非严格不等式。一般地,用纯粹的大于号、小于号“”“”连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)”“”连接的不等式称为非严格不等式,或称广义不等式。3.不等式的解:使不等式成立的未知数的值,叫做不等式的解。4.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。5.不等式解集的表示方法:(1)用不等式表示:一般的,一个含未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式表达出来,例如:x-12的解集是x3。 (2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地说明不等式有无限多个解,用数轴表示不等式的解集要注意两点:一是定边界线;二是定方向。 6.解不等式可遵循的一些同解原理(1)不等式F(x)F(x)同解。 (2)如果不等式F(x) G(x)的定义域被解析式H( x )的定义域所包含,那么不等式 F(x)G(x)与不等式F(x)+H(x)G(x)+H(x)同解。 (3)如果不等式F(x)0,那么不等式F(x)G(x)与不等式H(x)F(x)H( x )G(x) 同解;如果H(x)0,那么不等式F(x)H(x)G(x)同解。 (4)不等式F(x)G(x)0与不等式同解;不等式F(x)G(x)y,那么yx;如果yy;(对称性) (2)如果xy,yz;那么xz;(传递性) (3)如果xy,而z为任意实数或整式,那么x+zy+z;(加法则) (4) 如果xy,z0,那么xzyz;如果xy,z0,那么xzy,z0,那么xzyz;如果xy,z0,那么xzy,mn,那么x+my+n(充分不必要条件) (7)如果xy0,mn0,那么xmyn (8)如果xy0,那么x的n次幂y的n次幂(n为正数)8.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。9.解一元一次不等式的一般顺序:(1)去分母 (运用不等式性质2、3) (2)去括号 (3)移项 (运用不等式性质1) (4)合并同类项。 (5)将未知数的系数化为1 (运用不等式性质2、3) (6)有些时候需要在数轴上表示不等式的解集10. 一元一次不等式与一次函数的综合运用:一般先求出函数表达式,再化简不等式求解。11.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一个一元一次不等式组。12.解一元一次不等式组的步骤:(1) 求出每个不等式的解集; (2) 求出每个不等式的解集的公共部分;(一般利用数轴) (3) 用代数符号语言来表示公共部分。(也可以说成是下结论) 13.解不等式的诀窍(1)大于大于取大的(大大大); 例如:X-1,X2 ,不等式组的解集是X2 (2)小于小于取小的(小小小); 例如:X-4,X-6,不等式组的解集是X2,x3 ,不等式组的解集是X3 (2)同小取小 例如,x2,x3 ,不等式组的解集是X2 (3)大小小大中间找 例如,x1,不等式组的解集是1x2 (4)大大小小不用找 例如,x3,不等式组无解15.应用不等式组解决实际问题的步骤(1)审清题意(2)设未知数,根据
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新解读《GB-T 1652-2014色酚AS》深度解析
- 重型门窗知识培训课件
- 老年人的日常护理
- 《英语听力3》课程介绍与教学大纲
- 社会科学研究方法 课件 第四章 测量与操作化
- 老年人用药照料课件
- 企业知识管理共享平台解决方案
- 统编版五年级道德与法治上册全册教案设计
- 统编版七年级语文上册 第三单元《朝花夕拾》教学设计
- 实验仪器的选择与连接-2023年高考化学复习讲义(原卷版)
- 叙事护理学智慧树知到答案2024年中国人民解放军海军军医大学
- 第三单元 资产阶级民主革命与中华民国的建立(大单元教学设计)-2024-2025学年大单元视域下的历史同步教学(统编版·八年级上册)
- 2024年秋新人教版地理七年级上册全册教学课件(新教材)
- TCQJR 017-2024 重庆市“碳挂钩”贷款业务操作指南
- (高级)航空油料特设维修员理论考试题库(浓缩500题)
- 液化气站质量管理手册样本
- 产教融合育人协同创新模式
- 农资创业项目计划书
- 环境标志产品技术要求 房间空气调节器(HJ 2535-2013代替HJ-T304-2006)
- 矿山支护工安全培训课件
- 冠寓公寓运营管理手册
评论
0/150
提交评论