




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
-初中数学-初中数学 经典教材系列 老人教版第二单元 平行线一、教法建议抛砖引玉本单元的主要内容是平行线的概念,平行公理,平行线的判定和性质,这些知识间的关系如下图。 平行线平行公理及其推论判定公理和定理性质公理和定理 为了学好本单元内容,让学生在小学学过画平行线的基础上,自己画图,总结平行公理,再通过分析画平线的过程得知,画平行线实际上就是画相等的同位角,由此得到平行线的判定公理“同位角相等,两直线平行”.以判定公理为基础,应用对顶角的性质和邻补角的关系,再推导出平行线的两个判定定理.同样,用实验的方法得到平行线的性质公理“两直线平行,同位角相等”.以性质公理为基础,同样是应用对顶角性质和邻补角的关系,又推导出平行的两个性质定理.为了学好本单元的新内容,教学时,应先复习前一大节相交线所成角的有关知识,为本单元作好铺垫的准备,再强化本单元所学平行线判定公理和定理、性质公理和定理,为学好下一单元内容提供先决条件,使本单元内容真正起到承前启后,教学时,结合实例,实验,一定要学好,学熟,以便今后更好地学习与应用.在教学时,对平行线的判定与性质的题设,结论的关系,结合应用这些知识的练习,使学生体会它们的区别. 因为区分“判定”和“性质”的教学以后还要进行,这里不要求学生完全掌握,结合练习和习题,掌握住什么时候用“判定”,什么情况用“性质”就可以了,本大节的推理论证,除了不写已知,求证外,推理的步骤逐渐增多了,推理的格式逐步规范了,推理过程不在通过语言叙述来过渡,而是直接使用符号推理,并加强了有关推理练习,但仍然是让学生逐步接触,逐渐认识和熟练推理阶段,教学时,要循循善诱,因材施教,按练习和习题的要求进行教学,不要再增加习题的难度,习题量也不要太多,给学生留有思考的时间和空间.没有学过的一些逻辑名词,如题设、结论、定理、证明等术语可在教学时暂不使用.指点迷津平行线概念是用“不相交”这种否定的方式来定义的,这种否定的方式包含了对空间的想象.因为在实际中只有平行线段的形象,我们说的平行线是无限延伸着的,无论怎样延伸也不会相交,很难对此理解,为了加深对平行线概念的理解,可利用学生熟悉的长方体中棱的位置关系,说明只有在平面内不相交的直线才是平行线,在空间里,不相交不一定平行,还可能是异面画平行线一定要使用工具,不能徒手画,养成良好准确的作图习惯.怎样区分“判定”和“性质”,在这里告诉学生:从角的关系得到的结论是两直线平行,就是“判定”;如果已知直线平行,由平行线得到角相等或互补关系,是平行线的性质.再通过练习和习题,让学生会用,注意随时纠正出现的错误.为了培养学生的空间观念和空间思维能力.以学生对长方体的直观认识为基础,通过观察长方体某些棱与面,面与面不相交,进而把它们想象成空间里的直线与平面,平面与平面的不相交,来建立空间里平行概念.多观察,多想象,多思考,便可强化空间观念.二、学 海 导 航思维基础几何概念、公理、定理一定要理解并熟记,它是解决几何问题的工具.1.在同一平面内, 叫做平行线.2.在同一平面内,两条直线的位置关系只有 、 , 三种.3.平行公理:经过直线外一点,有且只有一条直线与 . 4.平行公理的一个推论:如果两条直线都和第三条直线平行,那么 .5.平行线判定公理:两条直线被第三条直线所截, .简单说成:同位角相等,两直线平行.6平行线判定定理1: ,如果内错角相等,那么 .简单说成:内错角相等,两直线平行.7.平行线判定定理2: ,如果同旁内角互补, .简单说成:同旁内角互补,两直线平行.8.在同一平面内,两条直线垂直于同一条直线,这两条直线 .9.平行线性质公理: .简单说成:两直线平行,角相等.10平行线性质定理1: .简单说成:两直线平行,内错角相等.11平行线性质定理2: .简单说成:两直线平行,同旁内角互补.12.如图2-36,在长方体中,棱CD与哪些平面平行? .面AADD与哪些棱平行? 。面ABBA与哪个面平行? 。 图2-36学法指要【例1】 如图2-37,如果ABDE,AEDC,那么1=2.填空: ABDE( ) 1= ( ) AEDC( ) =2( ) 1=2( ) 思考:1.平行线的性质公理是什么?2.平行线有几个性质定理?请叙述.3.等量代换你知道吗?请举例说明.思路分析:已知条件ABDE,AEDC,由两直线平行,可联想平行线的性质公理及定理,再结合图形,合可找出括号里每一步的根据. 解:已知,3,两直线平行,内错角相等,已知,3,两直线平行,内错角相等,等量代换. 图2-37 【例2】如图2-38,把推理的依据,填在括号内. 1=B(已知) ADBC( ) C=2(已知)( ) B=C(已知)( ) 1=2( ) AD是CAE的平分线( )思考:1.平行线的判定公理你知道吗?请叙述.2.判定两条直线平行有几种方法?3.平行线的性质公理.定理请叙述.思路分析:观察图形,结合已知条件,联想平行线的判定定理及平行线的性质定理等,便可找到括号里的根据.解:同位角相等,两直线平行;两直线平行,内错角相等;等量代换;角平分线定义. 图2-38 【例3】如图2-39,直线AB,CD被直线EF所截,量得1=80, 2=100,那么ABCD,为什么?思考:1.判定两条直线平行有几种方法?2.对顶角有什么性质?思路分析:欲证两条直线平行,必须联想两直线平行的判定公理及定理,再结合有关定理进行证明,便可找到,为什么?解1=80, 2=100(已知)又3=2=100(对顶角相等)1+3=180ABCD(同旁内角互补,二直线平行) 图2-39【例4】如图2-40,已知1=2,AC平分DAB.你能判断哪两条直线平行?请说明理由.思考:1.同位角相等,二直线平行,内错角相等,二直线也平行吗?2.角的平分线有什么性质?思路分析:观察图形可知,要证ABCD,进而转化证2=3.如何证2=3呢,结合已知条件,便可获证.解:可判定ABCD,理由如下: AC平分DAB(已知) 1=3(角平分线性质) 1=2(已知) 2=3(等量代换) ABCD(内错角相等,二直线平行) 图2-40【例5】如图2-41,已知1与2互补.求证:3与4互补.思考:1.同旁内角互补,二直线平行。2.请叙述对顶角的性质。3.平行线的性质公理、定理你知道吗?请叙述.思路分析:由图可知,可以观察知4与6是对顶角,所以要证3与4互补,只要证3与6互补,只要证AB CD.证明:1与5是对顶角 1=5 1与2互补(已知) 5与2互补(等量代换) ABCD(同旁内角互补,二直线平行) 3与6互补(二直线平行,同旁内角互补)6=4(对顶角相等)3与4互补(等量代换) 图2-41思维体操【例1】如图2-42,已知:ABCD. 求证:B+BED+D=360 图2-42 思考:1.你知道周角的定义吗?它的度数为多少?2.平角的定义是什么?它的度数是多少?3.条件分散,又如何把分散的条件集中呢?4.平行线的性质公理、定理你会叙述吗?思考分析:360可分为两个180,由这个180联想二直线平行,同旁内角互补;把三个角分为四个角,使两两互补即可.由360又引起我们联想,把三个角集中一块,成为一个周角也可达目的.证法一:把分散变集中,构成周角思路畅通.如图2-43,过E点作EFAB,则B=BEF(二直线平行,内错角相等)ABCD(已知)EFCD(平行同一直线的二直线平行)D=DEF(二直线平行,内错角相等)BEF+BED+DEF=360(周角定义)B+BED+D=360(等量代换) 图2-43 证法二:图2-44,一分为二好,分而证之巧过点E作EFABB+BEF=180(二直线平行,同旁内角互补)ABCD(已知)EFCD(平行于同一条直线的两条直线平行)D+DEF=180(二直线平行,同旁内角互补)B+BEF+DEF+D=360即B+BED+D=360 图2-44证法三:转化为平角,思路畅通了.如图2-45,延长AB,CD,过E点作EFAB,ABCD(已知)EFCD(平行于同一直线的二直线平行)1=2(二直线平行,内错角相等) 3=4(二直线平行,内错角相等)而ABD+1=180 CDE+4=180(平角定义)ABE+CDE+1+4=360即ABE+CDE+2+3=360(等量代换)ABE+CDE+BED=360 图2-45证法四:图2-46,转化为同位角,思路又找到,延长EB,ED,又过E点作EFAB,则有1=2(二直线平行,同位角相等)ABCD(已知)EFCD(平行于同一条直线的两直线平行)3=4(二直线平行,同位角相等)1+ABE=180(邻补角定义) 3+CDE=180(邻补角定义)1+3+ABE+CDE=3602+4+ABE+CDE=360即ABE+CDE+BED=360 图2-46【例2】 如图2-47,l1l2, 1=3x度,2=(x+y)度,3=(3x+2y)度,4(2x+y)度,求5的度数 图2-47思考1:1.请说出平行线的性质公理、定理.2.对顶角有什么性质?3.解二元一次方程组通常使用哪两种方法?4.如何把二元一次方程组转化为一元一次方程求解?思路分析:从已知条件获悉,本例是一道数形结合题,必须几何与代数互相配伍,才能找到思路的“向导”.因此,要应用几何定理建立关系式,再借助代数计算,可打通思路.解:1与2是对顶角(如图) 1=2即 3x=x+y l1l2(已知)2+3=180(二直线平行,同旁内角互补)即 x+y+3x+2y=180 、联立解方程组,得 x=18,y=36 4=2x+y=72 l1l2(已知) 5=180-4(二直线平行,同旁内角互补 =180-72 =18 又解:l1l2(已知) 3=6=3x+2y(度)(二直线平行,同位角相等) 1+6=180(邻补角定义) 3x+3x+2y=180 1=2(对顶角相等) 3x=x+y 、联立解方程组,得 x=18 y=36下同原解法,略。【例3】 如图2-48,1=2,BAM与AMD互补,求证:E=F. 图2-48思考:1.证明两角相等应转化为证明什么问题?2.请叙述平行线的判定公理及定理,再回忆平行线的性质公理及定理.3.证明两角相等你首先应想哪些定理?思路分析:欲证E=F,即转化为证明AEFM,要证AEFM,又须转化证FMA=EAM,又由于1=2,所以只要证CMA=BAM,由已知BAM与AMD互补,即可知ABCD,即时思路便打通了.证明:BAM+AMD=180(已知) ABCD(同旁内角互补,二直线平行) CMA=BAM(二直线平行,内错角相等) 1=2(已知) CMA-1=BAM-2 FAM=EAM(等量减等量,差相等) FMAE(内错角相等,二直线平行) E=F(二直线平行,内错角相等)三、智能显示心中有数 对本单元平行线概念及平行线的基本性质应了解,会用平行线的传递性进行推理。会用平行线的判定公理和定理及平行线的性质公理及定理进行推理和计算。正确使用作图工具(三角板,直尺)过已知直线外一点画这条直线的平行线、理解本单元学过的关于描述图形形状和位置关系的语句,并会用这些语句描述简单图形,会根据描述的语句画出图形。通过长方体图形,建立空间观念,培养空间思维能力。动脑动手一、 填空题 1.如图2-49,1=58,2=58,那么1=2,理由是 ,那么AB CD,理由是 。 图2-492.如图2-50,1=E,那么AC DE,理由是 ,如果2=A,那么AB ,理由是 ,如果3=B,那么 ,理由是 . 图2-50 3.如图2-51,如果EFBC,那么1= ,理由是 ,如果EFBC,那么C+ =180,理由是 ;如果EFBC,那么B,理由是 . 图2-514.如图2-52,如果DEAB,那么B= ,理由是 ;如果DEAB,那么A= ,理由是 ;如果DEAB,那么A+ =180,理由是 ;或B+ =180,理由是 ;如果 ,则C=FDB,理由是 。 图2-52 5.如图253,ABCD, 3=45, 1=75,求A.请在括号内填写推理依据,可用三角形内角和为180来求.ABCD( )2=3( )3=45( )2=45( )又ABCD( )A+ADC=180( )即A+1+2=180( )A=180-1-2 =180-75-45=60( ) 图2-53二、 已知:如图2-54,CD平分ACB,DEBC,AED=50,求EDC的度数. 图2-54三、 已知:如图2-55,A,B,C三点在一条直线上,1=2, D=3,求证:BDCE. 图2-55创新园地. 已知:如图2-56,ABCD,求证: BED=B+D. 已知:如图2-57, C=1, 2和D互余,BEFD于G,求证:ABCD. 如图2-58,ABCD, B=120, C=25,求E的度数. 图2-56 图2-57 图2-58 四、同步题库一、 填空题1. 的两条直线叫平行线. 2. 三条直a、b、c,如果ab,bc, 那么a c. 3. 如图2-59 ,ADBC,ABDA,AOB=40,则ABD= . 4. 两条平行直线被第三条直线所截,如果同旁内角之比为2:7,则这两个角分别是 和 . 图2-59 图2-60 图2-61 5.如图2-60,l1l2 , ACBD,则1和2的关系是 , 1和3的关系是 .6. 如图2-61, ABCD,其中1是2的2倍,则2= 。7. 如果直线ab,bc,那么a和c的位置关系是 .8. 如图2-62,已知ABCD,AE是CAB的平分线.如果BAE=51,那 么ACD= .9. 如图2-63,若ABEF,则1+2+3+4比5+6大 . 图2-62 图2-63 10. 如图2-64,直线ab,直线c与a、b都相交,且1=80,那么2= 度.11. 如图2-65,1=2, 3=135,那么4= . 图2-64 图2-65 12. 如图2-66,ABCD, 1=100,2=120,则a= .13. 如图2-67,所示,计划把水渠中的水引到水池中,可先过点引CDAB于,然后沿CD开渠,则能使新开的渠道最短,这种设计方案的根据是 图2-66 图2-6714. 如图2-68,ABCD,EG 、FG分别平分BEF和DEF,则EGF的度数为 15. 如图2-69,所示的长方体中,与面DCCD 平行的面是 . 图2-68 图2-69二、选择题16. 下列说法错误的是 .(A) 经过一点,有且只有一条直线和这条直线平行(B) 经过一点,有且只有一条直线和这条直线垂直(C) 经过直线外一点,有一条直线和这条直线平行(D) 经过直线外一点,有且只有一条直线和这条直线平行17. 两条直线被第三条直线所截,则 . (A) 同位角相等 (B) 内错角相等 (C)同旁内角互补 (D) 以上都不对18. 在同一平面内,两直线的位置关系可能有 . (A) 平行或相交 (B) 平行或垂直 (C)垂直或相交 (D) 平行、垂直或相交19. 已知直线a和直线c的夹角等于直线b与直线c的夹角,则直线a与b的位置关系为 ()平行 ()相交 ()垂直 ()不能确定20.如图2-70,ABCD,EFGH,下列结论错误的是 。 (A)1=2 (B)1=3 (C)1=4 (D) 1+4=180 图2-7021.如图2-71,ABCD,EG、FG分别为FED和EFB的平分线,则下列结论错误的是 . (A) 5+6=180 (B) 1+4=90 (C) G=90 (D) 2+3=180 图2-7122.两条直线被第三条直线所截,下列错误的是 .(A) 同位角相等,两直线平行(B) 同旁内角相等,两直线平行(C) 内错角相等,两直线平行(D) 同旁内角之和为180,两直线平行 23.平面内有三条直线l1、l2、l3,如果l1l2,l2l3那么l2和l3位置关系 .(A)平行 (B)垂直 (C)相交 (D)重合 24两直线被第三条直线所截成的八个角中,如果1和2是同旁内角且1=22,则2等于 . (A)60 (B)120 (C)90 (D)不能确定 25. 如图2-72,ABEF,CDEF,1=F=45,则与FCD相等的有 。 (A)3 (B)4 (C)5 (D)6 26.如果两个角的一边在同一直线上,另一边互相平行,那么这两个角 . (A)相等 (B)互补 (C)相等或互补 (D)不能确定 图2-72 图2-73 27.如图2-73,ABCD,BED=75,D=30,则B等于 . (A)30 (B)45 (C)60 (D)105 28.如图2-74,ABCD,AD和BC相交于点O,若A=42,C=51,则AOB= . (A)42 (B)51 (C)87 (D)90 图2-74 图2-75 29.如图2-75,直线a、b都与直线c相交,下列命题中,能判断ab的条件是 . 1=2 3=6 1=8 5+8=180 (A) (B) (C) (D) 30.如图2-76,如果ABCD,BE平分ABE,DF平分CDE,BED=75,那么BFD等于 . (A)37.5 (B)35 (C)38.5 (D)36 图2-76 三、解答题 31.如图2-77,ABBF,CDBF,1=2,且DCE=124,求AEF的度数. 32.如图2-78,ADBC,AC平分BCD,1=35,求D的度数. 图2-77 图2-78 33.如图2-79,已知:EF平分AED,CD平分ACB,1=2,求证:DEBC. 34.如图2-80,已知GDAC,AFE=ABC,1+2=180,求证:BEAC. 35.如图2-81,已知AD平分BAC,GEAD,GE交AB于F,交CA的延长线于G,求证:AFG=G. 图2-79 图2-80 图2-81 36.如图2-82,已知ABCD,EF和GH相交于P,BGP=150,GPF=70,求1和2的度数. 37.如图2-83,已知ACBC,CDAB,DGAC,1=2,求证:EFAB. 图2-82 图2-83 38.如图2-84,已知BED=1+2,求证:ABCD.(提示:过E点作AB的平行线) 39.如图2-85,已知A=1,E=2,ACEC,求证:ABDE.(提示:过点C作CFAB) 40.如图2-86,已知B=DCF,ADBC,AEAD,D=80,求BAE的度数. 图2-84 图2-85 图2-86参 考 答 案动脑动手一、1.等量代换;同位角相等,二直线平行 2. ;同位角相等,二直线平行;CD;内错角相等,二直线平行;ABCD;同位角相等,二直线平行 3.B;二直线平行,内错角相等;3;二直线平行,同旁内角互补;二直线平行,同位角相等 4.EDC;二直线平行,同位角相等;DEC;二直线平行,同位角相等;AED;二直线平行,同旁内角互补;EDB;二直线平行,同旁内角互补;DFAC,二直线平行,同位角相等 5.已知;二直线平行,内错角相等;已知;等量代换;已知;二直线平行,同旁内角互补;等量代换,等式性质二、解: CD平分ACB(已知) DCB=ACB(角平分线定义) DEBC(已知) EDC=DCB(二直线平行,内错角相等) AED=ACB(二直线平行,同位角相等) AED=50(已知) ACB=50(等量代换) DCB=ACB=50 =25EDC=25(等量代换)三、证明: 1=2(已知) ADBE(内错角相等,二直线平行) D=4(二直线平行,内错角相等) D=3(已知) 4=3(等量代换) BDCE(内错角相等,二直线平行)创新园地1 图2-87,证明:过点E作EFAB B=1(二直线平行,内错角相等) ABCD(已知) EFCD(平行于同一条直线的二直线平行) 2=D(二直线平行,内错角相等) BED=1+2=B+D(等量代换) 图2-87图2-88,又证:过E作EFAB B+BEF=180(二直线平行,同旁内角互补) ABCD(已知) EFCD(平行于同一条直线的两直线平行) D+DEF=180(二直线平行,同旁内角互补) B+BEF+D+DEF=360 BEF+DEF+BED=360(周角定义) B+D=BED(等量代换) 图2-882.证明:如图2-89,C=1(已知) BECF(同位角相等,二直线平行) DGE=DFC(二直线平行,同位角相等) BEFD(已知) DGE=90(垂直定义) DFC=90(等量代换) 2+CFD+DFB=180(平角定义) 2+DFB=180-CFD =180-90=90(等式性质) 2与D互余(已知) 2+D=90(互余定义) 2+DFB=2+D(等量代换) D=DFB(等式性质) ABCD(内错角相等,二直线平行) 图2-893.证明:如图2-90,过E作EFAB BEF=B=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 植物油料创新加工技术分析
- 油料作物气候智能种植风险评估报告
- 儿童食品添加剂健康影响分析
- 新兴互联网平台盈利模式分析
- 橡胶板密封系统安全性评估报告
- 主题八 生活自理我能行说课稿-2025-2026学年小学综合实践活动辽师大版三年级上册-辽师大版
- 2024-2025学年高中物理 第二章 机械波 6 多普勒效应说课稿1 教科版选修3-4
- 家装小区营销策划方案
- 《4.2 学习习惯ABC》(教学设计)-2023-2024学年五年级上册综合实践活动安徽大学版
- 护理模拟考试题及答案
- 2025年陕西省中考英语试题卷(含答案及解析)
- 职业中介公司管理制度
- 儿童口腔预防保健知识
- 口腔护士藻酸盐取模操作规范
- 机扩根管治疗讲课件
- 中医护理知识试题及答案
- 控制工程基础课件第二章
- JG/T 187-2006建筑门窗用密封胶条
- 2025-2030猫砂盆行业市场发展分析及发展前景与投资研究报告
- 电话卡借用免责协议书
- 2025年新教材道德与法治三年级上册第二单元《学科学爱科学》教案设计
评论
0/150
提交评论