




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一般地,设函数y=f(x)(xA)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x= g(y)(yC)叫做函数y=f(x)(xA)的反函数,记作y=f(-1)(x) 。反函数y=f (-1)(x)的定义域、值域分别是函数y=f(x)的值域、定义域。最具有代表性的反函数就是对数函数与指数函数。一般地,如果x与y关于某种对应关系f(x)相对应,y=f(x),则y=f(x)的反函数为x=f(y)或者y=f(x)。存在反函数(默认为单值函数)的条件是原函数必须是一一对应的(不一定是整个数域内的)。注意:上标1指的并不是幂。目录1. 1定义2. 2存在性3. 概述1. 反函数存在定理2. 3性质3. 4反函数的符号1. 5说明定义编辑设函数y=f(x)的定义域是D,值域是f(D)。如果对于值域f(D)中的每一个y,在D中有且只有一个x使得f(x)=y,则按此对应法则得到了一个定义在f(D)上的函数,并把该函数称为函数y=f(x)的反函数,记为由该定义可以很快得出函数f的定义域D和值域f(D)恰好就是反函数f-1的值域和定义域,并且f-1的反函数就是f,也就是说,函数f和f-1互为反函数,即:反函数与原函数的复合函数等于x,即:习惯上我们用x来表示自变量,用y来表示因变量,于是函数y=f(x)的反函数通常写成例如,函数的反函数是相对于反函数y=f-1(x)来说,原来的函数y=f(x)称为直接函数。反函数和直接函数的图像关于直线y=x对称。这是因为,如果设(a,b)是y=f(x)的图像上任意一点,即b=f(a)。根据反函数的定义,有a=f-1(b),即点(b,a)在反函数y=f-1(x)的图像上。而点(a,b)和(b,a)关于直线y=x对称,由(a,b)的任意性可知f和f-1关于y=x对称。于是我们可以知道,如果两个函数的图像关于y=x对称,那么这两个函数互为反函数。这也可以看做是反函数的一个几何定义。在微积分里,f(n)(x)是用来指f的n次微分的。若一函数有反函数,此函数便称为可逆的(invertible)。1存在性一函数f若要是一明确的反函数,它必须是一双射函数,即: (单射)陪域上的每一元素都必须只被f映射到一次:不然其反函数将必须将元素映射到超到一个的值上去。 (满射)陪域上的每一元素都必须被f映射到:不然将没有办法对某些元素定义f的反函数。若f为一实变函数,则若f有一明确反函数,它必通过水平线测试,即一放在f图上的水平线必对所有实数k,通过且只通过一次。1反函数存在定理定理:严格单调函数必定有严格单调的反函数,并且二者单调性相同。在证明这个定理之前先介绍函数的严格单调性。设y=f(x)的定义域为D,值域为f(D)。如果对D中任意两点x1和x2,当x1x2时,有y1y2,则称y=f(x)在D上严格单调递增;当x1y2,则称y=f(x)在D上严格单调递减。证明:设f在D上严格单增,对任一yf(D),有xD使f(x)=y。而由于f的严格单增性,对D中任一xx,都有yx,都有yy。总之能使f(x)=y的x只有一个,根据反函数的定义,f存在反函数f-1。任取f(D)中的两点y1和y2,设y1y2。而因为f存在反函数f-1,所以有x1=f-1(y1),x2=f-1(y2),且x1、x2D。若此时x1x2,根据f的严格单增性,有y1y2,这和我们假设的y1y2矛盾。因此x1x2,即当y1y2时,有f-1(y1)f-1(y2)。这就证明了反函数f-1也是严格单增的。如果f在D上严格单减,证明类似。1性质(1)函数f(x)与它的反函数f-1(x)图象关于直线y=x对称;函数及其反函数的图形关于直线y=x对称(2)函数存在反函数的充要条件是,函数的定义域与值域是一一映射;(3)一个函数与它的反函数在相应区间上单调性一致;(4)大部分偶函数不存在反函数(当函数y=f(x), 定义域是0 且 f(x)=C (其中C是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是C,值域为0 )。奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。(5)一段连续的函数的单调性在对应区间内具有一致性;(6)严增(减)的函数一定有严格增(减)的反函数;(7)反函数是相互的且具有唯一性;(8)定义域、值域相反对应法则互逆(三反);(9)反函数的导数关系:如果x=f(y)在开区间I上严格单调,可导,且f(y)0,那么它的反函数y=f-1(x)在区间S=x|x=f(y),yI 内也可导,且:(10)y=x的反函数是它本身。1反函数的符号编辑反函数的符号记为f-1(x),在中国的教材里,反三角函数记为arcsin、arccos等等,但是在欧美一些国家,sinx的反函数记为sin-1(x)。x-1表示1/x,那么f-1(x)与这是否有些关系呢?下面举几个例子来说明这点。当然,f-1(x)肯定和1/f(x)不等,但是确实有与之很相近的性质。(1)反函数的反函数为了好看以及对比,我有时会把f(x)写成f对比,我把我想各位应该很好理解,反函数的反函数当然就是原函数,写成数学语言就是(f-1)-1=f。看看,这是不是有点像指数的运算法则:1/x-1=x呢?(2)反函数的导函数这个应该就很像了。这也是高等数学的内容,中学同学就看不懂了,所以有些东西必须等到后面才能懂的。(f(x)=1/f(y)用自然语言来说就是,反函数的导数,等于直接函数导数的倒数。这话有点绕,不过应该能读懂,这个似乎就进一步揭示了反函数符号的意义。在这里要说明的是,y=f(x)的反函数应该是x=f-1(y)。只不过在通常的情况下,我们将x写作y,y写作x,以符合习惯。所以,虽然反函数和直接函数不互为倒数,但是各自导函数求出后,二者却是互为倒数。(3)反函数的复合函数这个内容属于高等数学的内容了。大伙想想函数里面最简单最基本的函数是什么函数?不用说,肯定就是我们的恒等函数y=x,这就和我们数字里面的1一般地位,所以,我们记恒等函数为“1x”。数字的基本运算就是加减乘除,而函数也有运算,虽然也有加减乘除,但是属于函数自己的,就是复合与反函数。我们知道在实数里,x与1/x的乘积等于1,在函数的复合运算里,也有类似的性质,函数f和g的复合记为fg,那么下面的性质成立:f-1f=1x;1xf=f1x=f。这第一个式子已经说明很多问题。实际上,这些都是属于高等代数的内容,在每一个封闭的系统里,都有一个“单位1”,都有自己的运算法则,函数里的就是1x,实数里的就是数字1等等。要深刻理解这些,也只有大家接触群论以后才会深入理解。这里也只是做点皮毛而已。我将在后面另起一文,介绍函数的“幂”的概念,就如同数的幂一样。2说明编辑(1)在函数x=f-1(y)中,y是自变量,x是函数,但习惯上,我们一般用x表示自变量,用y 表示函数,为此我们常常对调函数x=f-1(y)中的字母x,y,把它改写成y=f-1(x),今后凡无特别说明,函数y=f(x)的反函数都采用这种经过改写的形式。反函数也是函数,因为它符合函数的定义. 从反函数的定义可知,对于任意一个函数y=f(x)来说,不一定有反函数,若函数y=f(x)有反函数y=f-1(x),那么函数y=f-1(x)的反函数就是y=f(x),这就是说,函数y=f(x)与y=f-1(x)互为反函数。互为反函数的两个函数在各自定义域内有相同的单调性。单调函数一定有反函数,如二次函数在R内不是反函数,但在其单调增(减)的定义域内,可以求反函数;另外,反比例函数等函数不单调,也可求反函数。 从映射的定义可知,函数y=f(x)是定义域A到值域C的映射,而它的反函数y=f-1(x)是集合C到集合A的映射,因此,函数y=f(x)的定义域正好是它的反函数y=f-1(x)的值域;函数y=f(x)的值域正好是它的反函数y=f-1(x)的定义域(如下表):函数:y=f(x);反函数:y=f-1(x);定义域: A,C;值域: C,A;上述定义用“逆”映射概念可叙述为:若确定函数y=f(x)的映射f是函数的定义域到值域上的“一一映射”,那么由f的“逆”映射f-1所确定的函数y=f-1(x)就叫做函数y=f(x)的反函数. 反函数y=f-1(x)的定义域、值域分别对应原函数y=f(x)的值域、定义域.。开始的两个例子:s=vt记为f(t)=vt,则它的反函数就可以写为f-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 蜡裂解及重合装置操作工异常处理考核试卷及答案
- 稀土萃取工测试考核试卷及答案
- 炭极生产工理念考核试卷及答案
- 2025年机械零件平衡试验机行业研究报告及未来行业发展趋势预测
- 家用音频产品维修工招聘考核试卷及答案
- 钛汞合金冶炼工成本预算考核试卷及答案
- 聚四氢呋喃装置操作工作业指导书
- 油乳制备工岗位操作技能考核试卷及答案
- 粗钨酸钠溶液制备工设备维护与保养考核试卷及答案
- 冰糖加工工作业指导书
- GB/T 33339-2025全钒液流电池系统测试方法
- 护理标识管理制度
- 探讨跨界融合创新在智能数字服装设计中的应用和发展前景
- 面料培训资料
- 失血性贫血的护理
- 相控阵超声波检测技术培训
- 职业培训学校管理制度
- 《党政机关厉行节约反对浪费条例》培训课件
- 工商业光伏施工总承包合同
- 参考儿科急危重症抢救预案及流程
- 中信集团管理制度
评论
0/150
提交评论