



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课题:运用平方差公式进行分解因式 班级姓名 【教与学目标】1、使学生进一步理解因式分解的意义。2、使学生理解平方差公式的意义,弄清公式的形式和特征,会运用平方差公式分解因式。3、通过对比整式乘法和分解因式的关系,进一步发展学生的逆向思维能力。【教学过程】(一)设置情景:情景1:比一比,看谁算的又快又准确:572562 962952 ()2()2情景2:计算图中的阴影部分面积(用a、b的代数式表示)问题一:整体计算可以怎样表示?问题二:分割成如图两部分可以怎样计算?问题三:比较两种计算的结果你有什么发现?(二)平方差公式的特征辨析:把乘法公式(a+b)(ab)=a2b2反过来得:a2b2=(a+b)(ab)我们可以运用这个公式对某些多项式进行分解因式。这种方法叫运用平方差公式法。议一议:下列多项式可以用平方差公式分解吗?(1)x2y2 (2)x2+y2 (3)x2y2 (4)x2+y2 (5)64a2 (6)4x29y2小结:平方差公式的特点1.左边特征是:二项式,每项都是平方的形式,两项的符号相反。2.右边特征是:两个二项式的积,一个是左边两项的底数之和,另一个是这两个底数之差。3.在乘法公式中,平方差是指计算的结果,在分解因式时,平方差是指要分解的多项式。【典型例题】例1 把下列多项式分解因式:(1) 3625x2 (2) 16a29b2说明: (1)对于多项式中的两部分不是明显的平方形式,应先变形为平方形式,再运用公式分解,以免出现16a29b2=(16a+9b)(16a9b)的错误。(2)在此还要提醒防止出现分解后又乘开的现象。例2 把下列多项式分解因式:1. (x+p)2(x+q)2 2. 9(a+b)24(ab)2 分析:在这里,尤其要重视对运用平方差公式前的多项式观察和心算,而后是进行变形。这一点在这儿尤为重要。【自觉感悟】一、填空1、分解因式:(1)= ;(2)= (3)= ;(4)= (5)= ;(6)= 2、分解因式:(1)= ;(2) 3、分解因式: 4、分解因式: 5、若,则代数式的值是 二、课本P84 例4 , 练一练1 ,3中午作业 班级 姓名 一、填空:1、分解因式:= 2、分解因式:= 3、式子能被2030之间的整数 整除.4、已知x2y2=1 , x+y=,则xy= .二、下列分解因式是否正确:(1)x2y2=(x+y)(xy) (2)925a2=(3+25a)(3+25b)(3)4a2+9b2=(2a+3b)(2a3b)三、把下列各式分解因式:(1) 36x2 (2) a2b2 (3) x216y2(4) x2y2z2 (5) (x+2)29 (6)(x+a)2(y+b)2(7) 25(a+b)24(ab)2 (8) 0.25(x+y)20.81(xy)2(9) (10)四、解答题1、在边长为16.4cm的正方形纸片的四角各剪去一边长为1.8cm的正方形,求余下的纸片的面积。2、当为整数时,能被28整除吗?请说明理由。【自我反思】1、计算:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 坐月子饮食调理常识试题及答案
- 2025年文化产业引导资金申请项目可持续发展战略报告
- 推拿治疗学考试题库附参考答案详解(夺分金卷)
- 2025年肿瘤精准医疗临床实践中的临床试验信息化技术应用支持服务研究报告
- 2025年职业技能培训在乡村振兴中的需求与供给研究报告
- 推拿治疗学考试题库及参考答案详解【夺分金卷】
- 2025年老龄化趋势下老年教育课程体系构建与创新实践报告
- 2025至2030年中国国际旅游度假市场行情动态分析及发展前景趋势预测报告
- 解析卷-华东师大版8年级下册期末试题及参考答案详解【培优】
- 2025至2030年中国大黄提取物行业市场发展现状及未来发展趋势预测报告
- 汤小丹《计算机操作系统》官方课件 第四版
- 走近昆曲《牡丹亭》
- 3D打印混凝土材料性能试验方法
- 装饰色彩课件
- XX学校学校集体备课实施方案细则、方案、计划、制度、总结(全套资料)
- 医疗设备、器械项目实施方案、服务实施方案
- 非居民金融账户涉税信息尽职调查和信息报送制度
- (医学课件)急诊科进修汇报
- 世界排名前100的大学校徽
- 医疗纠纷典型案例分析课件
- 分布式光伏发电项目投标技术方案(纯方案)
评论
0/150
提交评论