时间序列分析在股票中的应用.doc_第1页
时间序列分析在股票中的应用.doc_第2页
时间序列分析在股票中的应用.doc_第3页
时间序列分析在股票中的应用.doc_第4页
时间序列分析在股票中的应用.doc_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

时间序列分析在股票市场中的应用摘要在现代金融浪潮的推动下,越来越多的人加入到股市,进行投资行为,以期得到丰厚的回报,这极大促进了股票市场的繁荣。而在这种投资行为的背后,越来越多的投资者逐渐意识到股市预测的重要性。 所谓股票预测是指:根据股票现在行情的发展情况地对未来股市发展方向以及涨跌程度的预测行为。这种预测行为只是基于假定的因素为既定的前提条件为基础的。但是在股票市场中,行情的变化与国家的宏观经济发展、法律法规的制定、公司的运营、股民的信心等等都有关联,因此所谓的预测难于准确预计。时间序列分析是经济预测领域研究的重要工具之一,它描述历史数据随时间变化的规律,并用于预测经济数据。在股票市场上,时间序列预测法常用于对股票价格趋势进行预测,为投资者和股票市场管理管理方提供决策依据。 关键词:ARIMA模型,自相关图,偏自相关图Abstract Under the impetus of the modern financial tide, more and more people join the stock market, make the investment behavior, in order to get a good return, which greatly promoted the stock markets prosperity. In the back of the investment behavior, more and more investors are gradually aware of the importance of the stock market forecast.The so-called stock forecast is: according to the current situation of stock market development in the future direction of the stock market development and the degree of forecast behavior. This prediction is based on the assumption that the assumption is based. But in the stock market, formulation of market change and the national macro economic development, laws and regulations, the companys operations, investors confidence and so on are linked, so called prediction it is very difficult to accurately predict.Time series analysis is one of the important tools in the field of economic forecasting. It describes the law of historical data with time, and is used to forecast economic data. In the stock market, time series forecasting method is often used to forecast the stock price trend, which provides the decision-making basis for the investors and the stock market management.Are introduced in this paper the method of time series analysis the concept, nature, the characteristic and the time series model, including the modeling of time series data pre processing, model identification, parameter estimation, model test, model optimization and model prediction of.引言股票市场的发展状况在一定程度上可以反映国家的经济实力、公司的发展潜能、人民的收入水平等等,因此在股票走势方面的研究吸引了大批学者的关注。但是在准确预测股票市场的走势方面还存在较大困难,建立一种准确预测股票价格未来走势的模型已经成为金融专家和投资者的首要任务。目前,预测股票价格走势的方法多种多样,但是均存在对股票价格的波动拟合效果较差,预测精度有限等问题。由于时间序列模型具有应用范围广、限制要求低、短期预测准确率高等优点,因此时间序列模型已经成为金融预测领域较流行的预测模型之一。时间序列分析是一种广泛应用的数量分析方法,它主要用于描述和探索现象随时间发展变化的数量规律。时间序列是指同一种现象在不同时间上的相继观察值排列而成的一组数字序列。时间序列预测方法则是通过时间序列的历史数据揭示现象随时间变化的规律,将这种规律延伸到未来,从而对该现象的未来做出预测。本文主要介绍了时间序列分析方法的概念,性质,特点以及时间序列模型,包括建模时对数据时间序列的预处理、模型识别、参数估计、模型检验、模型优化以及模型预测等。实例分析1. 绘制时序图(如图1所示) 由时序图可以清晰的显示出,该序列变化毫无规律,显然该序列也一定不是平稳序列图12. 差分平稳 下图2是一阶差分后的序列图图2此时该序列的数据基本平稳,在均值上下浮动。所以,考虑差分后序列的自相关图(如图3)图3自相关图显示,延迟二阶后,自相关系数基本都在零附近波动,可以认为自相关系数具有短期相关性,该差分后的序列平稳。3.对平稳的一阶差分序列进行白噪声检验(如图4)图4在检验的显著性水平取为0.05的条件下,由于延迟6阶的检验统计量的P值小于0.05,所以该差分后序列不能视为白噪声序列。4模型定阶下面考虑偏自相关图(如图5)图5 偏自相关图显示,除了延迟1阶和延迟2阶的偏自相关系数显著大于2倍标准差之外,其

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论