二《九章算术》.docx_第1页
二《九章算术》.docx_第2页
二《九章算术》.docx_第3页
二《九章算术》.docx_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

古代算术与现代高考1、“竹九节”问题1算法统宗是中国古代数学名著,由明代数学家程大位编著算法统宗对我国民间普及珠算和数学知识起到了很大的作用,在这部著作中,许多数学问题都是以歌诀形式呈现的,“竹筒容米”就是其中一首:家有九節竹一莖,為因盛米不均平;下頭三節三升九,上梢四節貯三升;唯有中間二節竹,要將米數次第盛;若是先生能算法,也教算得到天明!大意是:用一根9节长的竹子盛米,每节竹筒盛米的容积是不均匀的下端3节可盛米3.9升,上端4节可盛米3升自下而上盛米容积相差同一数量的方式盛米,中间两节可盛米多少升?由以上条件,计算出中间两节(自下而上第4、5节)的容积为() A2.1升B2.2升C2.3升D2.4升2、“女子织布”问题2九章算术是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女子善织,日益功,疾,初日织五尺,今一月织九匹三丈(1匹=40尺,一丈=10尺),问日益几何?”其意思为:“有一女子擅长织布,每天比前一天更加用功,织布的速度也越来越快,从第二天起,每天比前一天多织相同量的布,第一天织5尺,一月织了九匹三丈,问每天增加多少尺布?”若一个月按30天算,则每天增加量为() A尺B尺C尺D尺3、“走步”问题3中国古代数学著作算法统宗中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请君仔细算相还”其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地”则该人最后一天走的路程为()A24里B12里C6里D3里4、“分钱”问题4九章算术是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等问各得几何”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列问五人各得多少钱?”(“钱”是古代的一种重量单位)这个问题中,甲所得为()A钱B钱C钱D钱5、两鼠穿墙问题5九章算术中的“两鼠穿墙题”是我国数学的古典名题:“今有垣厚若干尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,问何日相逢,各穿几何?”题意是:“有两只老鼠从墙的两边打洞穿墙,大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半”如果墙足够厚,Sn为前n天两只老鼠打洞长度之和,则Sn= 尺6、宝塔问题6在明朝程大位算法统宗中有这样的一首歌谣:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯” 这首古诗描述的这个宝塔古称浮屠,本题说它一共有7层,每层悬挂的红灯数是上一层的2倍,共有381盏灯,问塔顶有几盏灯?你算出顶层有()盏灯A2B3C5D67、欧阳修卖油翁7欧阳修卖油翁中写道“(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿可见“行行出状元”,卖油翁的技艺让人叹为观止若铜钱是直径为6cm的圆,中间有边长为3cm的正方形孔,若随机向铜钱上滴一滴油(油滴的直径忽略不计),则正好落入孔中的概率是 8、弧田面积8九章算术是我国古代数学成就的杰出代表作,其中方田章给出计算弧田面积所用的经验方式为:弧田面积=(弦矢+矢2),弧田(如图)由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角为,半径等于4米的弧田,按照上述经验公式计算所得弧田面积约是()A6平方米B9平方米C12平方米D15平方米9、辗转相除法9我国古代名著九章算术用“更相减损术”求两个正整数的最大公约数是一个伟大的创举,这个伟大创举与古老的算法“辗转相除法”实质一样,如图的程序框图源于“辗转相除法”当输入a=6102,b=2016时,输出的a=()A6B9C12D1810、牟合方盖相关10我国古代数学家利用“牟合方盖”(如图甲)找到了球体体积的计算方法它是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体图乙所示的几何体是可以形成“牟合方盖”的一种模型,其直观图如图丙,图中四边形是为体现其直观性所作的辅助线当其正视图和侧视图完全相同时,它的正视图和俯视图分别可能是()Aa,bBa,dCc,bDc,d11、类比推理(割圆术)11在九章算术方田章圆田术(刘徽注)中指出:,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”注述中所用的割圆术是一种无限与有限的转化过程,比如在中“”即代表无限次重复,但原式却是个定值x,这可以通过方程=x确定出来x=2,类似地不难得到= 。12割圆术是我国古代数学家刘徽创造的一种求周长和面积的方法:随着圆内接正多边形边数的增加,它的周长和面积越来越接近圆周长和圆面积,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”刘徽就是大胆地应用了以直代曲、无限趋近的思想方法求出了圆周率请你也用这个方法求出二次函数的图象与两坐标轴所围成的图形最接近的面积是()A5BC4D17412、杨辉三角问题13.以下数表的构造思路源于我国南宋数学家杨辉所著的详解九章算术一书中的“杨辉三角形”该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数为()A201722015B201722014C201622015D2016

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论