数学:26.3实际问题与二次函数(2个课时)教案(人教新课标九年级下).doc_第1页
数学:26.3实际问题与二次函数(2个课时)教案(人教新课标九年级下).doc_第2页
数学:26.3实际问题与二次函数(2个课时)教案(人教新课标九年级下).doc_第3页
数学:26.3实际问题与二次函数(2个课时)教案(人教新课标九年级下).doc_第4页
数学:26.3实际问题与二次函数(2个课时)教案(人教新课标九年级下).doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

26.3实际问题与二次函数(1)教学目标: 1使学生掌握用待定系数法由已知图象上一个点的坐标求二次函数yax2的关系式。 2. 使学生掌握用待定系数法由已知图象上三个点的坐标求二次函数的关系式。 3让学生体验二次函数的函数关系式的应用,提高学生用数学意识。重点难点: 重点:已知二次函数图象上一个点的坐标或三个点的坐标,分别求二次函数yax2、yax2bxc的关系式是教学的重点。难点:已知图象上三个点坐标求二次函数的关系式是教学的难点。教学过程:一、创设问题情境 如图,某建筑的屋顶设计成横截面为抛物线型(曲线AOB)的薄壳屋顶。它的拱高AB为4m,拱高CO为0.8m。施工前要先制造建筑模板,怎样画出模板的轮廓线呢?分析:为了画出符合要求的模板,通常要先建立适当的直角坐标系,再写出函数关系式,然后根据这个关系式进行计算,放样画图。 如图所示,以AB的垂直平分线为y轴,以过点O的y轴的垂线为x轴,建立直角坐标系。这时,屋顶的横截面所成抛物线的顶点在原点,对称轴是y轴,开口向下,所以可设它的函数关系式为: yax2 (a0) (1) 因为y轴垂直平分AB,并交AB于点C,所以CB 2(cm),又CO0.8m,所以点B的坐标为(2,0.8)。 因为点B在抛物线上,将它的坐标代人(1),得 0.8a22 所以a0.2 因此,所求函数关系式是y0.2x2。 请同学们根据这个函数关系式,画出模板的轮廓线。二、引申拓展 问题1:能不能以A点为原点,AB所在直线为x轴,过点A的x轴的垂线为y轴,建立直角坐标系? 让学生了解建立直角坐标系的方法不是唯一的,以A点为原点,AB所在的直线为x轴,过点A的x轴的垂线为y轴,建立直角坐标系也是可行的。 问题2,若以A点为原点,AB所在直线为x轴,过点A的x轴的垂直为y轴,建立直角坐标系,你能求出其函数关系式吗? 分析:按此方法建立直角坐标系,则A点坐标为(0,0),B点坐标为(4,0),OC所在直线为抛物线的对称轴,所以有ACCB,AC2m,O点坐标为(2;08)。即把问题转化为:已知抛物线过(0,0)、(4,0);(2,08)三点,求这个二次函数的关系式。 二次函数的一般形式是yax2bxc,求这个二次函数的关系式,跟以前学过求一次函数的关系式一样,关键是确定o、6、c,已知三点在抛物线上,所以它的坐标必须适合所求的函数关系式;可列出三个方程,解此方程组,求出三个待定系数。 解:设所求的二次函数关系式为yax2bxc。 因为OC所在直线为抛物线的对称轴,所以有ACCB,AC2m,拱高OC0.8m,所以O点坐标为(2,0.8),A点坐标为(0,0),B点坐标为(4,0)。由已知,函数的图象过(0,0),可得c0,又由于其图象过(2,0.8)、(4,0),可得到解这个方程组,得 所以,所求的二次函数的关系式为yx2x。 问题3:根据这个函数关系式,画出模板的轮廓线,其图象是否与前面所画图象相同? 问题4:比较两种建立直角坐标系的方式,你认为哪种建立直角坐标系方式能使解决问题来得更简便?为什么? (第一种建立直角坐标系能使解决问题来得更简便,这是因为所设函数关系式待定系数少,所求出的函数关系式简单,相应地作图象也容易) 请同学们阅渎P18例7。 三、课堂练习: P18练习1(1)、(3)2。 四、综合运用例1如图所示,求二次函数的关系式。 分析:观察图象可知,A点坐标是(8,0),C点坐标为(0,4)。从图中可知对称轴是直线x3,由于抛物线是关于对称轴的轴对称图形,所以此抛物线在x轴上的另一交点B的坐标是(2,0),问题转化为已知三点求函数关系式。 解:观察图象可知,A、C两点的坐标分别是(8,0)、(0,4),对称轴是直线x3。因为对称轴是直线x3,所以B点坐标为(2,0)。设所求二次函数为yax2bxc,由已知,这个图象经过点(0,4),可以得到c4,又由于其图象过(8,0)、(2,0)两点,可以得到解这个方程组,得 所以,所求二次函数的关系式是yx2x4 练习: 一条抛物线yax2bxc经过点(0,0)与(12,0),最高点的纵坐标是3,求这条抛物线的解析式。五、小结: 二次函数的关系式有几种形式,函数的关系式yax2bxc就是其中一种常见的形式。二次函数关系式的确定,关键在于求出三个待定系数a、b、c,由于已知三点坐标必须适合所求的函数关系式,故可列出三个方程,求出三个待定系数。六、作业 1P19习题 262 4(1)、(3)、5。 2选用课时作业优化设计,每一课时作业优化设计 1. 二次函数的图象的顶点在原点,且过点(2,4),求这个二次函数的关系式。 2若二次函数的图象经过A(0,0),B(1,11),C(1,9)三点,求这个二次函数的解析式。 3如果抛物线yax2Bxc经过点(1,12),(0,5)和(2,3),;求abc的值。4已知二次函数yax2bxc的图象如图所示,求这个二次函数的关系式; 5二次函数yax2bxc与x轴的两交点的横坐标是,与x轴交点的纵坐标是5,求这个二次函数的关系式。26.3实际问题与二次函数(2)教学目标: 1复习巩固用待定系数法由已知图象上三个点的坐标求二次函数的关系式。2使学生掌握已知抛物线的顶点坐标或对称轴等条件求出函数的关系式。重点难点:根据不同条件选择不同的方法求二次函数的关系式是教学的重点,也是难点。教学过程:一、复习巩固 1如何用待定系数法求已知三点坐标的二次函数关系式? 2已知二次函数的图象经过A(0,1),B(1,3),C(1,1)。 (1)求二次函数的关系式, (2)画出二次函数的图象; (3)说出它的顶点坐标和对称轴。 答案:(1)yx2x1,(2)图略,(3)对称轴x,顶点坐标为(,)。 3二次函数yax2bxc的对称轴,顶点坐标各是什么? 对称轴是直线x,顶点坐标是(,)二、范例 例1已知一个二次函数的图象过点(0,1),它的顶点坐标是(8,9),求这个二次函数的关系式。 分析:二次函数yax2bxc通过配方可得ya(xh)2k的形式称为顶点式,(h,k)为抛物线的顶点坐标,因为这个二次函数的图象顶点坐标是(8,9),因此,可以设函数关系式为: ya(x8)29 由于二次函数的图象过点(0,1),将(0,1)代入所设函数关系式,即可求出a的值。 请同学们完成本例的解答。 练习:P18练习1(2)。 例2已知抛物线对称轴是直线x2,且经过(3,1)和(0,5)两点,求二次函数的关系式。 解法1:设所求二次函数的解析式是yax2bxc,因为二次函数的图象过点(0,5),可求得c5,又由于二次函数的图象过点(3,1),且对称轴是直线x2,可以得 解这个方程组,得: 所以所求的二次函数的关系式为y2x28x5。 解法二;设所求二次函数的关系式为ya(x2)2k,由于二次函数的图象经过(3,1)和(0,5)两点,可以得到 解这个方程组,得: 所以,所求二次函数的关系式为y2(x2)23,即y2x28x5。 例3。已知抛物线的顶点是(2,4),它与y轴的一个交点的纵坐标为4,求函数的关系式。 解法1:设所求的函数关系式为ya(xh)2k,依题意,得ya(x2)24 因为抛物线与y轴的一个交点的纵坐标为4,所以抛物线过点(0,4),于是a(02)244,解得a2。所以,所求二次函数的关系式为y2(x2)24,即y2x28x4。 解法2:设所求二次函数的关系式为yax2bxc?依题意,得解这个方程组,得: 所以,所求二次函数关系式为y2x28x4。三、课堂练习 1. 已知二次函数当x3时,有最大值1,且当x0时,y3,求二次函数的关系式。 解法1:设所求二次函数关系式为yax2bxc,因为图象过点(0,3),所以c3,又由于二次函数当x3时,有最大值1,可以得到: 解这个方程组,得: 所以,所求二次函数的关系式为yx2x3。 解法2:所求二次函数关系式为ya(xh)2k,依题意,得ya(x3)21 因为二次函数图象过点(0,3),所以有 3a(03)21 解得a 所以,所求二次函数的关系为y44/9(x3)21,即yx2x3 小结:让学生讨论、交流、归纳得到:已知二次函数的最大值或最小值,就是已知该函数顶点坐标,应用顶点式求解方便,用一般式求解计算量较大。 2已知二次函数yx2pxq的图象的顶点坐标是(5,2),求二次函数关系式。 简解:依题意,得 解得:p10,q23 所以,所求二次函数的关系式是yx210x23。四、小结1,求二次函数的关系式,常见的有几种类型? 两种类型:(1)一般式:yax2bxc (2)顶点式:ya(xh)2k,其顶点是(h,k) 2如何确定二次函数的关系式? 让学生回顾、思考、交流,得出:关键是确定上述两个式子中的待定系数,通常需要三个已知条件。在具体解题时,应根据具体的已知条件,灵活选用合适的形式,运用待定系数法求解。五、作业: 1. 已知抛物线的顶点坐标为(1,3),与y轴交点为(0,5),求二次函数的关系式。 2函数yx2pxq的最小值是4,且当x2时,y5,求p和q。 3若抛物线yx2bxc的最高点为(1,3),求b和c。 4已知二次函数yax2bxc的图象经过A(0,1),B(1,0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论