江苏高考数学试卷纵向分类汇总(2008—2011).doc_第1页
江苏高考数学试卷纵向分类汇总(2008—2011).doc_第2页
江苏高考数学试卷纵向分类汇总(2008—2011).doc_第3页
江苏高考数学试卷纵向分类汇总(2008—2011).doc_第4页
江苏高考数学试卷纵向分类汇总(2008—2011).doc_第5页
已阅读5页,还剩47页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏高考数学试卷纵向分类汇总(20082011)江苏高考数学试卷纵向分类汇总(20082011)一、集合与简易逻辑(一)填空题1、(2008江苏卷4)A=,则A Z 的元素的个数 【解析】本小题考查集合的运算和解一元二次不等式由得,0,集合A 为 ,因此A Z 的元素不存在2、(2009江苏卷11)已知集合,若则实数的取值范围是,其中= . 【解析】 考查集合的子集的概念及利用对数的性质解不等式。 a4,c=43、(2010江苏卷1)设集合A=-1,1,3,B=a+2,a2+4,AB=3,则实数a=_.【解析】考查集合的运算推理。3B, a+2=3, a=1.4、(2011苏卷1)已知集合 则【解析】 考查集合的交集运算,答案:5、(2011苏卷14)设集合, , 若 则实数m的取值范围是_【解析】当时,集合A是以(2,0)为圆心,以为半径的圆,集合B是在两条平行线之间,(2,0)在直线的上方 ,又因为此时无解;当时,集合A是以(2,0)为圆心,以和为半径的圆环,集合B是在两条平行线之间,必有当时,只要,.当时, 只要,当时,一定符合又因为,.本题主要考查集合概念,子集及其集合运算、线性规划,直线的斜率,两直线平行关系,点到直线的距离,圆的方程,直线与圆的位置关系、含参分类讨论、解不等式,及其综合能力.本题属难题. 二、函数(一)填空题1、(2008江苏卷8)直线是曲线的一条切线,则实数b 【解析】本小题考查导数的几何意义、切线的求法 ,令得,故切点(2,ln2),代入直线方程,得,所以bln212、(2008江苏卷14)对于总有0 成立,则= 【解析】本小题考查函数单调性的综合运用若x0,则不论取何值,0显然成立;当x0 即时,0可化为,设,则, 所以 在区间上单调递增,在区间上单调递减,因此,从而4;当x0 即时,0可化为, 在区间上单调递增,因此,从而4,综上43、(2009江苏卷3)函数的单调减区间为 . 【解析】 考查利用导数判断函数的单调性。,由得单调减区间为。亦可填写闭区间或半开半闭区间。4、(2009江苏卷9)在平面直角坐标系中,点P在曲线上,且在第二象限内,已知曲线C在点P处的切线的斜率为2,则点P的坐标为 . 【解析】 考查导数的几何意义和计算能力。 ,又点P在第二象限内,点P的坐标为(-2,15)5、(2009江苏卷10)已知,函数,若实数、满足,则、的大小关系为 . 【解析】考查指数函数的单调性。 ,函数在R上递减。由得:m0,得:讨论得:当时,解集为;当时,解集为;当时,解集为.4、(2010江苏卷20)(本小题满分16分)设是定义在区间上的函数,其导函数为。如果存在实数和函数,其中对任意的都有0,使得,则称函数具有性质。(1)设函数,其中为实数。(i)求证:函数具有性质; (ii)求函数的单调区间。(2)已知函数具有性质。给定设为实数,且,若|0,所以对任意的都有,在上递增。又。当时,且, 综合以上讨论,得:所求的取值范围是(0,1)。(方法二)由题设知,的导函数,其中函数对于任意的都成立。所以,当时,从而在区间上单调递增。当时,有,得,同理可得,所以由的单调性知、,从而有|0,故进而上恒成立,所以因此的取值范围是 (2)令若又因为,所以函数在上不是单调性一致的,因此现设;当时,因此,当时,故由题设得从而因此时等号成立,又当,从而当故当函数上单调性一致,因此的最大值为三、三角函数(一)填空题1、(2008江苏卷1)的最小正周期为,其中,则= 【解析】本小题考查三角函数的周期公式.2、(2009江苏卷4)函数(为常数,)在闭区间上的图象如图所示,则= . 【解析】 考查三角函数的周期知识。 ,所以3、(2010江苏卷10)定义在区间上的函数y=6cosx的图像与y=5tanx的图像的交点为P,过点P作PP1x轴于点P1,直线PP1与y=sinx的图像交于点P2,则线段P1P2的长为_。【解析】考查三角函数的图象、数形结合思想。线段P1P2的长即为sinx的值,且其中的x满足6cosx=5tanx,解得sinx=。线段P1P2的长为4、(2010江苏卷13)在锐角三角形ABC,A、B、C的对边分别为a、b、c,则=_。【解析】考查三角形中的正、余弦定理三角函数知识的应用,等价转化思想。一题多解。(方法一)考虑已知条件和所求结论对于角A、B和边a、b具有轮换性。当A=B或a=b时满足题意,此时有:,= 4。(方法二),5、(2011江苏卷7)已知 则的值为_.【解析】.本题主要考查三角函数的概念,同角三角函数的基本关系式,正弦余弦函数的诱导公式,两角和与差的正弦余弦正切,二倍角的正弦余弦正切及其运用,中档题.6、(2011江苏卷9)函数是常数,的部分图象如图所示,则【解析】由图可知: 由图知:本题主要考查正弦余弦正切函数的图像与性质,的图像与性质以及诱导公式,数形结合思想,中档题.(二)解答题1、(2008江苏卷15)如图,在平面直角坐标系中,以轴为始边做两个锐角,,它们的终边分别与单位圆相交于A,B 两点,已知A,B 的横坐标分别为()求tan()的值;()求的值【解析】本小题考查三角函数的定义、两角和的正切、二倍角的正切公式由条件的,因为,为锐角,所以=因此()tan()= () ,所以为锐角,=2、(2009江苏卷15)(本小题满分14分) 设向量 (1)若与垂直,求的值; (2)求的最大值; (3)若,求证:. 【解析】 本小题主要考查向量的基本概念,同时考查同角三角函数的基本关系式、二倍角的正弦、两角和的正弦与余弦公式,考查运算和证明得基本能力。满分14分。3、(2010江苏卷17)(本小题满分14分)某兴趣小组测量电视塔AE的高度H(单位:m),如示意图,垂直放置的标杆BC的高度h=4m,仰角ABE=,ADE=。(1) 该小组已经测得一组、的值,tan=1.24,tan=1.20,请据此算出H的值;(2) 该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d(单位:m),使与之差较大,可以提高测量精确度。若电视塔的实际高度为125m,试问d为多少时,-最大?【解析】本题主要考查解三角形的知识、两角差的正切及不等式的应用。(1),同理:,。 ADAB=DB,故得,解得:。因此,算出的电视塔的高度H是124m。(2)由题设知,得,(当且仅当时,取等号)故当时,最大。因为,则,所以当时,-最大。故所求的是m。4、(2010江苏卷23)(本小题满分10分)已知ABC的三边长都是有理数。(1) 求证cosA是有理数;(2)求证:对任意正整数n,cosnA是有理数。【解析】本题主要考查余弦定理、数学归纳法等基础知识,考查推理论证的能力与分析问题、解决问题的能力。满分10分。(方法一)(1)证明:设三边长分别为,是有理数,是有理数,分母为正有理数,又有理数集对于除法的具有封闭性,必为有理数,cosA是有理数。(2)当时,显然cosA是有理数;当时,因为cosA是有理数, 也是有理数;假设当时,结论成立,即coskA、均是有理数。当时,解得:cosA,均是有理数,是有理数,是有理数。即当时,结论成立。综上所述,对于任意正整数n,cosnA是有理数。(方法二)证明:(1)由AB、BC、AC为有理数及余弦定理知是有理数。(2)用数学归纳法证明cosnA和都是有理数。当时,由(1)知是有理数,从而有也是有理数。假设当时,和都是有理数。当时,由,及和归纳假设,知和都是有理数。即当时,结论成立。综合、可知,对任意正整数n,cosnA是有理数。5、(2011江苏卷15)在ABC中,角A、B、C所对应的边为(1)若 求A的值;(2)若,求的值.【解析】本题主要考查三角函数的基本关系式、两角和的正弦公式、解三角形,考查运算求解能力。满分14分.解:(1)由题设知,(2)由故ABC是直角三角形,且.四、平面向量(一)填空题1、(2008江苏卷5),的夹角为, 则 【解析】本小题考查向量的线性运算=,72、(2008江苏卷13)若AB=2, AC=BC ,则的最大值 【解析】本小题考查三角形面积公式、余弦定理以及函数思想设BC,则AC ,根据面积公式得=,根据余弦定理得,代入上式得=由三角形三边关系有解得,故当时取得最大值3、(2009江苏卷2)已知向量和向量的夹角为,则向量和向量的数量积= 。【解析】 考查数量积的运算。 4、(2011江苏卷10)已知是夹角为的两个单位向量, 若,则k的值为 .【解析】 因为且,所以2k20,即k.(二)解答题1、(2010江苏卷15)(本小题满分14分)在平面直角坐标系xOy中,点A(1,2)、B(2,3)、C(2,1)。(1) 求以线段AB、AC为邻边的平行四边形两条对角线的长;(2) 设实数t满足()=0,求t的值。解析本小题考查平面向量的几何意义、线性运算、数量积,考查运算求解能力。满分14分。(1)(方法一)由题设知,则所以故所求的两条对角线的长分别为、。(方法二)设该平行四边形的第四个顶点为D,两条对角线的交点为E,则:E为B、C的中点,E(0,1)又E(0,1)为A、D的中点,所以D(1,4) 故所求的两条对角线的长分别为BC=、AD=;(2)由题设知:=(2,1),。由()=0,得:,从而所以。或者:,五、数列(一)填空题1、(2008江苏卷10)将全体正整数排成一个三角形数阵:12 34 5 67 8 9 10 按照以上排列的规律,第n 行(n 3)从左向右的第3 个数为 【解析】本小题考查归纳推理和等差数列求和公式前n1 行共有正整数12(n1)个,即个,因此第n 行第3 个数是全体正整数中第3个,即为2、(2009江苏卷14)设是公比为的等比数列,令,若数列有连续四项在集合中,则= . 【解析】 考查等价转化能力和分析问题的能力。等比数列的通项。 有连续四项在集合,四项成等比数列,公比为,= -93、(2010江苏卷8)函数y=x2(x0)的图像在点(ak,ak2)处的切线与x轴交点的横坐标为ak+1,k为正整数,a1=16,则a1+a3+a5=_解析考查函数的切线方程、数列的通项。在点(ak,ak2)处的切线方程为:当时,解得,所以。4、(2011江苏卷13)设,其中成公比为q的等比数列,成公差为1的等差数列,则q的最小值是_.【解析】由题意:,而的最小值分别为1,2,3;.本题主要考查综合运用等差、等比的概念及通项公式,不等式的性质解决问题的能力,考查抽象概括能力和推理能力,本题属难题.(二)解答题1、(2008江苏卷19).()设是各项均不为零的等差数列(),且公差,若将此数列删去某一项得到的数列(按原来的顺序)是等比数列:当n =4时,求的数值;求的所有可能值;()求证:对于一个给定的正整数n(n4),存在一个各项及公差都不为零的等差数列,其中任意三项(按原来顺序)都不能组成等比数列【解析】:本小题考查等差数列、等比数列的综合应用。(1)当n=4时, 中不可能删去首项或末项,否则等差数列中连续三项成等比数列,则推出d=0。 若删去,则,即化简得,得若删去,则,即化简得,得综上,得或。当n=5时, 中同样不可能删去,否则出现连续三项。若删去,则,即化简得,因为,所以不能删去;当n6时,不存在这样的等差数列。事实上,在数列中,由于不能删去首项或末项,若删去,则必有,这与矛盾;同样若删去也有,这与矛盾;若删去中任意一个,则必有,这与矛盾。(或者说:当n6时,无论删去哪一项,剩余的项中必有连续的三项)综上所述,。(2)假设对于某个正整数n,存在一个公差为d的n项等差数列,其中()为任意三项成等比数列,则,即,化简得 (*)由知,与同时为0或同时不为0当与同时为0时,有与题设矛盾。故与同时不为0,所以由(*)得因为,且x、y、z为整数,所以上式右边为有理数,从而为有理数。于是,对于任意的正整数,只要为无理数,相应的数列就是满足题意要求的数列。例如n项数列1,满足要求。2、(2009江苏卷17)(本小题满分14分) 设是公差不为零的等差数列,为其前项和,满足。(1)求数列的通项公式及前项和; (2)试求所有的正整数,使得为数列中的项。 【解析】 本小题主要考查等差数列的通项、求和的有关知识,考查运算和求解的能力。满分14分。(1)设公差为,则,由性质得,因为,所以,即,又由得,解得,,(2) (方法一)=,设, 则=, 所以为8的约数(方法二)因为为数列中的项,故为整数,又由(1)知:为奇数,所以经检验,符合题意的正整数只有。w.w.w.k.s.5.u.c.o.m 3、(2009江苏卷23)(本题满分10分)对于正整数2,用表示关于的一元二次方程有实数根的有序数组的组数,其中(和可以相等);对于随机选取的(和可以相等),记为关于的一元二次方程有实数根的概率。(1)求和;(2)求证:对任意正整数2,有.【解析】 必做题本小题主要考查概率的基本知识和记数原理,考查探究能力。满分10分。 w.w.w.k.s.5.u.c.o.m 4、(2010江苏卷19)(本小题满分16分)设各项均为正数的数列的前n项和为,已知,数列是公差为的等差数列。(1)求数列的通项公式(用表示);(2)设为实数,对满足的任意正整数,不等式都成立。求证:的最大值为。【解析】本小题主要考查等差数列的通项、求和以及基本不等式等有关知识,考查探索、分析及论证的能力。满分16分。(1)由题意知:, ,化简,得:,当时,适合情形。故所求(2)(方法一), 恒成立。 又,故,即的最大值为。(方法二)由及,得,。于是,对满足题设的,有。所以的最大值。另一方面,任取实数。设为偶数,令,则符合条件,且。于是,只要,即当时,。所以满足条件的,从而。因此的最大值为。5、(2011江苏卷20)设部分为正整数组成的集合,数列,前n项和为,已知对任意整数kM,当整数都成立 (1)设的值; (2)设的通项公式【解析】本小题考查数列的通项与前项和的关系、等差数列的基本性质等基础知识,考查考生分析探究及逻辑推理的能力,满分16分。解:(1)由题设知,当,即,从而所以的值为8。 (2)由题设知,当,两式相减得所以当成等差数列,且也成等差数列从而当时,(*)且,即成等差数列,从而,故由(*)式知当时,设当,从而由(*)式知故从而,于是因此,对任意都成立,又由可知,解得因此,数列为等差数列,由所以数列的通项公式为六、不等式(一)填空题1、(2008江苏卷11)已知,则的最小值 【解析】本小题考查二元基本不等式的运用由得,代入得,当且仅当3 时取“”2、(2010江苏卷12)设实数x,y满足38,49,则的最大值是 。【解析】考查不等式的基本性质,等价转化思想。,的最大值是27。(二)解答题1、(2009江苏卷19)(本小题满分16分) 按照某学者的理论,假设一个人生产某产品单件成本为元,如果他卖出该产品的单价为元,则他的满意度为;如果他买进该产品的单价为元,则他的满意度为.如果一个人对两种交易(卖出或买进)的满意度分别为和,则他对这两种交易的综合满意度为. w.w.w.k.s.5.u.c.o.m 现假设甲生产A、B两种产品的单件成本分别为12元和5元,乙生产A、B两种产品的单件成本分别为3元和20元,设产品A、B的单价分别为元和元,甲买进A与卖出B的综合满意度为,乙卖出A与买进B的综合满意度为(1)求和关于、的表达式;当时,求证:=; (2)设,当、分别为多少时,甲、乙两人的综合满意度均最大?最大的综合满意度为多少? (3)记(2)中最大的综合满意度为,试问能否适当选取、的值,使得和同时成立,但等号不同时成立?试说明理由。 【解析】 本小题主要考查函数的概念、基本不等式等基础知识,考查数学建模能力、抽象概括能力以及数学阅读能力。满分16分。(1) 当时,, = w.w.w.k.s.5.u.c.o.m (2)当时,由,故当即时,w.w.w.k.s.5.u.c.o.m 甲乙两人同时取到最大的综合满意度为。(3)(方法一)由(2)知:=由得:,w.w.w.k.s.5.u.c.o.m 令则,即:。同理,由得:另一方面,当且仅当,即=时,取等号。所以不能否适当选取、的值,使得和同时成立,但等号不同时成立。 w.w.w.k.s.5.u.c.o.m 七、立体几何(一)填空题1、(2009江苏卷8)在平面上,若两个正三角形的边长的比为1:2,则它们的面积比为1:4,类似地,在空间内,若两个正四面体的棱长的比为1:2,则它们的体积比为 . 【解析】 考查类比的方法。体积比为1:8 2、(2009江苏卷12)设和为不重合的两个平面,给出下列命题: (1)若内的两条相交直线分别平行于内的两条直线,则平行于;(2)若外一条直线与内的一条直线平行,则和平行;(3)设和相交于直线,若内有一条直线垂直于,则和垂直;(4)直线与垂直的充分必要条件是与内的两条直线垂直。上面命题中,真命题的序号 (写出所有真命题的序号). 【解析】 考查立体几何中的直线、平面的垂直与平行判定的相关定理。真命题的序号是(1)(2)(二)解答题1、(2008江苏卷16)在四面体ABCD 中,CB= CD, ADBD,且E ,F分别是AB,BD 的中点,求证:()直线EF 面ACD ;()面EFC面BCD 【解析】本小题考查空间直线与平面、平面与平面的位置关系的判定() E,F 分别是AB,BD 的中点,EF 是ABD 的中位线,EFAD,EF面ACD ,AD 面ACD ,直线EF面ACD () ADBD ,EFAD, EFBD.CB=CD, F 是BD的中点,CFBD.又EFCF=F,BD面EFCBD面BCD,面EFC面BCD 江西卷解 :(1)证明:依题设,是的中位线,所以,则平面,所以。又是的中点,所以,则。因为,所以面,则,因此面。(2)作于,连。因为平面,根据三垂线定理知,就是二面角的平面角。作于,则,则是的中点,则。设,由得,解得,在中,则,。所以,故二面角为。解法二:(1)以直线分别为轴,建立空间直角坐标系,则所以所以所以平面由得,故:平面(2)由已知设则由与共线得:存在有得 同理:设是平面的一个法向量,则令得 又是平面的一个法量所以二面角的大小为(3)由(2)知,平面的一个法向量为。则。则点到平面的距离为2、(2008江苏卷22)记动点P是棱长为1的正方体的对角线上一点,记当为钝角时,求的取值范围5.(2009江苏卷16)(本小题满分14分) 如图,在直三棱柱中,、分别是、的中点,点在上,。 求证:(1)EF平面ABC; (2)平面平面.【解析】 本小题主要考查直线与平面、平面与平面得位置关系,考查空间想象能力、推理论证能力。满分14分。3、(2010江苏卷16)(本小题满分14分)如图,在四棱锥P-ABCD中,PD平面ABCD,PD=DC=BC=1,AB=2,ABDC,BCD=900。(1) 求证:PCBC;(2) 求点A到平面PBC的距离。【解析】本小题主要考查直线与平面、平面与平面的位置关系,考查几何体的体积,考查空间想象能力、推理论证能力和运算能力。满分14分。(1)证明:因为PD平面ABCD,BC平面ABCD,所以PDBC。由BCD=900,得CDBC,又PDDC=D,PD、DC平面PCD,所以BC平面PCD。因为PC平面PCD,故PCBC。(2)(方法一)分别取AB、PC的中点E、F,连DE、DF,则:易证DECB,DE平面PBC,点D、E到平面PBC的距离相等。又点A到平面PBC的距离等于E到平面PBC的距离的2倍。由(1)知:BC平面PCD,所以平面PBC平面PCD于PC,因为PD=DC,PF=FC,所以DFPC,所以DF平面PBC于F。易知DF=,故点A到平面PBC的距离等于。(方法二)体积法:连结AC。设点A到平面PBC的距离为h。因为ABDC,BCD=900,所以ABC=900。从而AB=2,BC=1,得的面积。由PD平面ABCD及PD=1,得三棱锥P-ABC的体积。因为PD平面ABCD,DC平面ABCD,所以PDDC。又PD=DC=1,所以。由PCBC,BC=1,得的面积。由,得,故点A到平面PBC的距离等于。4、(2011江苏卷16)如图,在四棱锥中,平面PAD平面ABCD,AB=AD,BAD=60,E、F分别是AP、AD的中点求证:(1)直线EF平面PCD;(2)平面BEF平面PAD【解析】本题主要考查直线与平面、平面与平面的位置关系,考察空间想象能力和推理论证能力。满分14分。证明:(1)在PAD中,因为E、F分别为AP,AD的中点,所以EF/PD.又因为EF平面PCD,PD平面PCD,所以直线EF/平面PCD.(2)连结DB,因为AB=AD,BAD=60,所以ABD为正三角形,因为F是AD的中点,所以BFAD.因为平面PAD平面ABCD,BF平面ABCD,平面PAD平面ABCD=AD,所以BF平面PAD。又因为BF平面BEF,所以平面BEF平面PAD.5、(2011江苏卷22)如图,在正四棱柱中,点是的中点,点在上,设二面角的大小为。(1)当时,求的长;(2)当时,求的长。解:建立如图所示的空间直角坐标系,设,则各点的坐标为,所以设平面DMN的法向量为即,则是平面DMN的一个法向量。从而 (1)因为,所以,解得所以 (2)因为所以因为,解得根据图形和(1)的结论可知,从而CM的长为八、直线与圆(一)填空题1、(2008江苏卷9)在平面直角坐标系中,设三角形ABC 的顶点分别为A(0,a),B(b,0),C (c,0) ,点P(0,p)在线段AO 上(异于端点),设a,b,c, p 均为非零实数,直线BP,CP 分别交AC , AB 于点E ,F ,一同学已正确算的OE的方程:,请你求OF的方程: 【解析】本小题考查直线方程的求法画草图,由对称性可猜想填事实上,由截距式可得直线AB:,直线CP: ,两式相减得,显然直线AB与CP 的交点F 满足此方程,又原点O 也满足此方程,故为所求直线OF 的方程2、(2010江苏卷9)在平面直角坐标系xOy中,已知圆上有且仅有四个点到直线12x-5y+c=0的距离为1,则实数c的取值范围是_ 解析考查圆与直线的位置关系。 圆半径为2,圆心(0,0)到直线12x-5y+c=0的距离小于1,的取值范围是(-13,13)。(二)解答题1.(2008江苏卷18)设平面直角坐标系中,设二次函数的图象与两坐标轴有三个交点,经过这三个交点的圆记为C求:()求实数b 的取值范围;()求圆C 的方程;()问圆C 是否经过某定点(其坐标与b 无关)?请证明你的结论【解析】本小题主要考查二次函数图象与性质、圆的方程的求法()令0,得抛物线与轴交点是(0,b);令,由题意b0 且0,解得b1 且b0()设所求圆的一般方程为令0 得这与0 是同一个方程,故D2,F令0 得0,此方程有一个根为b,代入得出Eb1所以圆C 的方程为.()圆C 必过定点(0,1)和(2,1)证明如下:将(0,1)代入圆C 的方程,得左边0120(b1)b0,右边0,所以圆C 必过定点(0,1)同理可证圆C 必过定点(2,1)2、(2009江苏卷18)(本小题满分16分) 在平面直角坐标系中,已知圆和圆.(1)若直线过点,且被圆截得的弦长为,求直线的方程;(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线和,它们分别与圆和圆相交,且直线被圆截得的弦长与直线被圆截得的弦长相等,试求所有满足条件的点P的坐标。【解析】 本小题主要考查直线与圆的方程、点到直线的距离公式,考查数学运算求解能力、综合分析问题的能力。满分16分。(1)设直线的方程为:,即由垂径定理,得:圆心到直线的距离,结合点到直线距离公式,得: 化简得:求直线的方程为:或,即或(2) 设点P坐标为,直线、的方程分别为:w.w.w.k.s.5.u.c.o.m ,即:因为直线被圆截得的弦长与直线被圆截得的弦长相等,两圆半径相等。由垂径定理,得:圆心到直线与直线的距离相等。 故有:,化简得:关于的方程有无穷多解,有: w.w.w.k.s.5.u.c.o.m 解之得:点P坐标为或。九、圆锥曲线(一)填空题1、(2008江苏卷12)在平面直角坐标系中,椭圆1( 0)的焦距为2,以O为圆心,为半径的圆,过点作圆的两切线互相垂直,则离心率= 【解析】设切线PA、PB 互相垂直,又半径OA 垂直于PA,所以OAP 是等腰直角三角形,故,解得2、(2009江苏卷13)如图,在平面直角坐标系中,为椭圆的四个顶点,为其右焦点,直线与直线相交于点T,线段与椭圆的交点恰为线段的中点,则该椭圆的离心率为 . 【解析】 考查椭圆的基本性质,如顶点、焦点坐标,离心率的计算等。以及直线的方程。直线的方程为:;直线的方程为:。二者联立解得:, 则在椭圆上, 解得:3.(2010江苏卷6)在平面直角坐标系xOy中,双曲线上一点M,点M的横坐标是3,则M到双曲线右焦点的距离是_解析考查双曲线的定义。,为点M到右准线的距离,=2,MF=4。(二)解答题1、(2009江苏卷22)(本题满分10分)在平面直角坐标系中,抛物线C的顶点在原点,经过点A(2,2),其焦点F在轴上。(1)求抛物线C的标准方程;(2)求过点F,且与直线OA垂直的直线的方程;(3)设过点的直线交抛物线C于D、E两点,ME=2DM,记D和E两点间的距离为,求关于的表达式。【解析】 必做题本小题主要考查直线、抛物线及两点间的距离公式等基本知识,考查运算求解能力。满分10分。 2、(2010江苏卷18)(本小题满分16分)在平面直角坐标系中,如图,已知椭圆的左、右顶点为A、B,右焦点为F。设过点T()的直线TA、TB与椭圆分别交于点M、,其中m0,。(1)设动点P满足,求点P的轨迹;(2)设,求点T的坐标;(3)设,求证:直线MN必过x轴上的一定点(其坐标与m无关)。【解析】本小题主要考查求简单曲线的方程,考查方直线与椭圆的方程等基础知识。考查运算求解能力和探究问题的能力。满分16分。(1)设点P(x,y),则:F(2,0)、B(3,0)、A(-3,0)。由,得 化简得。故所求点P的轨迹为直线。(2)将分别代入椭圆方程,以及得:M(2,)、N(,)直线MTA方程为:,即,直线NTB 方程为:,即。联立方程组,解得:,所以点T的坐标为。(3)点T的坐标为直线MTA方程为:,即,直线NTB 方程为:,即。分别与椭圆联立方程组,同时考虑到,解得:、。(方法一)当时,直线MN方程为: 令,解得:。此时必过点D(1,0);当时,直线MN方程为:,与x轴交点为D(1,0)。所以直线MN必过x轴上的一定点D(1,0)。(方法二)若,则由及,得,此时直线MN的方程为,过点D(1,0)。若,则,直线MD的斜率,直线ND的斜率,得,所以直线MN过D点。因此,直线MN必过轴上的点(1,0)。3、(2011江苏卷18)如图,在平面直角坐标系中,M、N分别是椭圆的顶点,过坐标原点的直线交椭圆于P、A两点,其中P在第一象限,过P作x轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为k(1)当直线PA平分线段MN,求k的值;(2)当k=2时,求点P到直线AB的距离d;(3)对任意k0,求证:PAPB【解析】本小题主要考查椭圆的标准方程及几何性质、直线方程、直线的垂直关系、点到直线的距离等基础知识,考查运算求解能力和推理论证能力,满分16分.解:(1)由题设知,所以线段MN中点的坐标为,由于直线PA平分线段MN,故直线PA过线段MN的中点,又直线PA过坐标原点,所以 (2)直线PA的方程解得于是直线AC的斜率为(3)解法一:将直线PA的方程代入则故直线AB的斜率为其方程为解得.于是直线PB的斜率因此解法二:设.设直线PB,AB的斜率分别为因为C在直线AB上,所以从而因此十、概率与统计(一)填空题1、(2008江苏卷2)一个骰子连续投2 次,点数和为4 的概率 【解析】本小题考查古典概型基本事件共66 个,点数和为4 的有(1,3)、(2,2)、(3,1)共3 个,故2、(2008江苏卷6)在平面直角坐标系中,设D是横坐标与纵坐标的绝对值均不大于2 的点构成的区域, E是到原点的距离不大于1 的点构成的区域,向D 中随机投一点,则落入E 中的概率 【解析】本小题考查古典概型如图:区域D 表示边长为4 的正方形的内部(含边界),区域E 表示单位圆及其内部,因此3、(2009江苏卷5)现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3m的概率为 . 【解析】 考查等可能事件的概率知识。 从5根竹竿中一次随机抽取2根的可能的事件总数为10,它们的长度恰好相差0.3m的事件数为2,分别是:2.5和2.8,2.6和2.9,所求概率为0.2。4、(2009江苏卷6)某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表: 学生1号2号3号4号5号甲班67787乙班67679则以上两组数据的方差中较小的一个为= . 【解析】 考查统计中的平均值与方差的运算。甲班的方差较小,数据的平均值为7,故方差 5、(2010江苏卷3)盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是_ _.解析考查古典概型知识。6、(2010江苏卷4)某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间5,40中,其频率分布直方图如图所示,则其抽样的100根中,有_根在棉花纤维的长度小于20mm。解析考查频率分布直方图的知识。100(0.001+0.001+0.004)5=307、(2011江苏卷5)从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是_【解析】从1,2,3,4这四个数中一次随机取两个数有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共6种. 其中符合条件的有2种,所以概率为.也可以由得到.本题主要考查随机事件与概率,古典概型的概率计算,互斥事件及其发生的概率.容易题.8、(2011江苏卷6)某老师从星期一到星期五收到信件数分别是10,6,8,5,6,则该组数据的方差.【解析】五个数的平均数是7,方差为还可以先把这组数都减去6再求方差,.本题主要考查总体分布的估计,总体特征数的估计,平均数方差的计算,考查数据处理能力,容易题.(二)解答题1、(2010江苏卷22)本小题满分10分)某工厂生产甲、乙两种产品,甲产品的一等品率为80%,二等品率为20%;乙产品的一等品率为90%,二等品率为10%。生产1件甲产品,若是一等品则获得利润4万元,若是二等品则亏损1万元;生产1件乙产品,若是一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论