



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
圆锥曲线练习题21抛物线的焦点到准线的距离是( )A B C D2若抛物线上一点到其焦点的距离为,则点的坐标为( )。A B C D3以椭圆的顶点为顶点,离心率为的双曲线方程( )A B C或 D以上都不对4 是椭圆的两个焦点,为椭圆上一点,且,则的面积( )A B C D5以坐标轴为对称轴,以原点为顶点且过圆的圆心的抛物线的方程是( )A或 B C或 D或6若抛物线上一点到准线的距离等于它到顶点的距离,则点的坐标为( )A B C D7椭圆上一点与椭圆的两个焦点、的连线互相垂直,则的面积为( )A B C D 8若点的坐标为,是抛物线的焦点,点在抛物线上移动时,使取得最小值的的坐标为( )A B C D9与椭圆共焦点且过点的双曲线方程是( )A B C D10若椭圆的离心率为,则它的长半轴长为_.11双曲线的渐近线方程为,焦距为,这双曲线的方程为_。12抛物线的准线方程为.13椭圆的一个焦点是,那么 。14椭圆的离心率为,则的值为_。15双曲线的一个焦点为,则的值为_。16若直线与抛物线交于、两点,则线段的中点坐标是_。17为何值时,直线和曲线有两个公共点?有一个公共点?没有公共点? 18在抛物线上求一点,使这点到直线的距离最短。 19双曲线与椭圆有相同焦点,且经过点,求其方程。 20设是双曲线的两个焦点,点在双曲线上,且,求的面积。 圆锥曲线练习题21抛物线的焦点到准线的距离是( B )A B C D2若抛物线上一点到其焦点的距离为,则点的坐标为( C )。A B C D3以椭圆的顶点为顶点,离心率为的双曲线方程( C )A B C或 D以上都不对4 是椭圆的两个焦点,为椭圆上一点,且,则的面积为( C )A B C D5以坐标轴为对称轴,以原点为顶点且过圆的圆心的抛物线的方程是( D )A或 B C或 D或6若抛物线上一点到准线的距离等于它到顶点的距离,则点的坐标为( B )A B C D7椭圆上一点与椭圆的两个焦点、的连线互相垂直,则的面积为( D )A B C D 8若点的坐标为,是抛物线的焦点,点在抛物线上移动时,使取得最小值的的坐标为( D )A B C D9与椭圆共焦点且过点的双曲线方程是( A )A B C D10若椭圆的离心率为,则它的长半轴长为_ _.11双曲线的渐近线方程为,焦距为,这双曲线的方程为_。12抛物线的准线方程为.13椭圆的一个焦点是,那么 1 。14椭圆的离心率为,则的值为_。15双曲线的一个焦点为,则的值为_。16若直线与抛物线交于、两点,则线段的中点坐标是_。17为何值时,直线和曲线有两个公共点?有一个公共点?没有公共点?解:由,得,即 当,即时,直线和曲线有两个公共点; 当,即时,直线和曲线有一个公共点; 当,即时,直线和曲线没有公共点。18在抛物线上求一点,使这点到直线的距离最短。解:设点,距离为, 当时,取得最小值,此时为所求的点。19双曲线与椭圆有相同焦点,且经过点,求其方程。解:椭圆的焦点为,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 孕产妇心理健康分析及护理
- 教师正能量培训
- 中医护理的特点
- HIV阳性患者护理诊断与干预策略
- 中药采购验收培训
- 支原体肺炎防控与诊疗进展
- 爱校教育主题
- 理财经理年终工作总结
- 2025年仿制药一致性评价对医药市场药品市场准入门槛调整影响分析报告
- 后疫情时代医疗行业创新产品与服务市场分析报告
- 2025届福建省厦门市名校数学七下期末质量检测试题含解析
- 北京社工考试题及答案
- DB62T 3081-2022 绿色建筑工程验收标准
- 2023-2024学年山东省青岛市西海岸高一下学期期末学业水平检测数学试题(解析版)
- 食品供应商协议合同模板
- 扬州市仪征市2024-2025学年三下数学期末质量检测试题含解析
- 2025中国台湾薪酬指南
- 口服给药安全警示教育
- 江苏征兵业务培训课件
- 黄金饰品购销合同(2025版)
- 2025年北京市第一次普通高中学业水平合格性考试历史试题(原卷版+解析版)
评论
0/150
提交评论