人教A版选修11 第三章§3.2 导数的计算 学案.docx_第1页
人教A版选修11 第三章§3.2 导数的计算 学案.docx_第2页
人教A版选修11 第三章§3.2 导数的计算 学案.docx_第3页
人教A版选修11 第三章§3.2 导数的计算 学案.docx_第4页
人教A版选修11 第三章§3.2 导数的计算 学案.docx_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

3.2导数的计算第1课时几个常用函数的导数与基本初等函数的导数公式学习目标1.能根据定义求函数yc,yx,yx2,y,y的导数.2.能利用给出的基本初等函数的导数公式求简单函数的导数知识点一几个常用函数的导数原函数导函数f(x)cf(x)0f(x)xf(x)1f(x)x2f(x)2xf(x)f(x)f(x)f(x)知识点二基本初等函数的导数公式原函数导函数f(x)c(c为常数)f(x)0f(x)x(q*)f(x)x1f(x)sin xf(x)cos_xf(x)cos xf(x)sin_xf(x)axf(x)axln_a(a0)f(x)exf(x)exf(x)logaxf(x)(a0,且a1)f(x)ln xf(x)1若y,则y3.()2若f(x)sin x,则f(x)cos x()3因为(ln x),则ln x()类型一利用导数公式求函数的导数例1求下列函数的导数(1)yx12;(2)y;(3)y;(4)y2sin cos ;(5)y;(6)y3x.考点基本初等函数的导数公式题点利用导数公式求函数的导数解(1)y(x12)12x12112x11.(2)y(x4)4x414x5.(3)y() .(4)y2sin cos sin x,ycos x.(5)y.(6)y(3x)3xln 3.反思与感悟若题目中所给出的函数解析式不符合导数公式,需通过恒等变换对解析式进行化简或变形后求导,如根式化成指数幂的形式求导跟踪训练1求下列函数的导数(1)y(1);(2)y2cos21.考点基本初等函数的导数公式题点利用导数公式求函数的导数解(1)y(1),y.(2)y2cos21cos x,y(cos x)sin x.类型二导数公式的应用命题角度1求切线方程例2已知点p(1,1),点q(2,4)是曲线yx2上两点,是否存在与直线pq垂直的切线,若有,求出切线方程,若没有,请说明理由考点导数的应用题意导数的应用解因为y(x2)2x,假设存在与直线pq垂直的切线设切点为(x0,y0),由pq的斜率为k1,而切线与pq垂直,所以2x01,即x0.所以切点为.所以所求切线方程为y(1),即4x4y10.引申探究若本例条件不变,求与直线pq平行的曲线yx2的切线方程解因为y(x2)2x,设切点为m(x0,y0),则2x0,又因为pq的斜率为k1,而切线平行于pq,所以k2x01,即x0.所以切点为m.所以所求切线方程为yx,即4x4y10.反思与感悟解决切线问题,关键是确定切点,要充分利用(1)切点处的导数是切线的斜率(2)切点在切线上(3)切点又在曲线上这三个条件联立方程解决跟踪训练2已知两条曲线ysin x,ycos x,是否存在这两条曲线的一个公共点,使在这一点处两条曲线的切线互相垂直?并说明理由考点导数的应用题点导数的应用解设存在一个公共点(x0,y0),使两曲线的切线垂直,则在点(x0,y0)处的切线斜率分别为k1cos x0,k2sin x0.要使两切线垂直,必须有k1k2cos x0(sin x0)1,即sin 2x02,这是不可能的所以两条曲线不存在公共点,使在这一点处的两条切线互相垂直命题角度2求切点坐标例3求抛物线yx2上的点到直线xy20的最短距离考点导数的应用题点导数的应用解依题意知抛物线yx2与直线xy20平行的切线的切点到直线xy20的距离最短,设切点坐标为(x0,x)y(x2)2x,2x01,x0,切点坐标为,所求的最短距离d.反思与感悟利用基本初等函数的求导公式,可求其图象在某一点p(x0,y0)处的切线方程,可以解决一些与距离、面积相关的几何的最值问题,一般都与函数图象的切线有关解题时可先利用图象分析取最值时的位置情况,再利用导数的几何意义准确计算跟踪训练3已知直线l: 2xy40与抛物线yx2相交于a,b两点,o是坐标原点,试求与直线l平行的抛物线的切线方程,并在弧上求一点p,使abp的面积最大考点导数的应用题点导数的应用解设m(x0,y0)为切点,过点m与直线l平行的直线斜率ky2x0,k2x02,x01,y0 1.故可得m(1,1),切线方程为2xy10.由于直线l: 2xy40与抛物线yx2相交于a,b两点,|ab|为定值,要使abp的面积最大,只要p到ab的距离最大,故点m(1,1)即为所求弧上的点p,使abp的面积最大1下列结论:(sin x)cos x;(log3x);(ln x).其中正确的有()a0个 b1个c2个 d3个考点基本初等函数的导数公式题点利用导数公式求函数的导数答案c解析;(log3x),错误,故选c.2质点的运动方程是s(其中s的单位为m,t的单位为s),则质点在t3 s时的速度为()a434 m/s b334 m/sc535 m/s d435 m/s考点几个常用函数的导数题点几个常用函数导数的应用答案d解析s4t5,s|t3435.则质点在t3 s时的速度为435 m/s.3曲线yln x在x1处切线的倾斜角为()a1 bc. d.考点基本初等函数的导数公式题点指数函数、对数函数的导数答案c解析y|x11,则切线的倾斜角为.4曲线yex在点(0,1)处的切线方程为_考点基本初等函数的导数公式题点常数、幂函数的导数答案xy10解析y|x01,切线方程为y1x,即xy10.5当常数k为何值时,直线ykx与曲线yx2相切?请求出切点考点几个常用函数的导数题点几个常用函数导数的应用解设切点为a(x0,x),因为y2x,所以所以k0,故当k0时,直线ykx与曲线yx2相切,且切点坐标为(0,0)1利用常见函数的导数公式可以比较简便地求出函数的导数,其关键是牢记和运用好导数公式解题时,能认真观察函数的结构特征,积极地进行联想化归2有些函数可先化简再应用公式求导如求y12sin2的导数因为y12sin2cos x,所以y(cos x)sin x.3对于正弦、余弦函数的导数,一是注意函数名称的变化,二是注意函数符号的变化.一、选择题1下列结论中正确的个数为()yln 2,则y;yf(x),则f(3);y2x,则y2xln 2;ylog2x,则y.a0 b1 c2 d3考点基本初等函数的导数公式题点基本初等函数的导数公式的应用答案d解析中yln 2为常数,所以y0.错2已知f(x),则f等于()a25 bc. d25考点几个常用函数的导数题点几个常用函数导数的应用答案b解析因为f(x),所以f(x).故f25,ff(25).3已知f(x)xa,若f(1)4,则a等于()a4 b4 c5 d5考点基本初等函数的导数公式题点常数、幂函数的导数答案a解析f(x)axa1,f(1)a(1)a14,a4.4正弦曲线ysin x上切线的斜率等于的点为()a.b.或c. (kz)d.或 (kz)考点基本初等函数的导数公式题点正弦、余弦函数的导数答案d解析设斜率等于的切线与曲线的切点为p(x0,y0),y|xx0cos x0,x02k或2k,kz,y0或.5函数yex在点(2,e2)处的切线与坐标轴围成三角形的面积为()a.e2 b2e2ce2 d.考点基本初等函数的导数公式题点指数函数、对数函数的导数答案d解析y(ex)ex,ke2,曲线在点(2,e2)处的切线方程为ye2e2(x2),即ye2xe2.当x0时,ye2,当y0时,x1.s1|e2|e2.6已知曲线yx3在点(2,8)处的切线方程为ykxb,则kb等于()a4 b4 c28 d28考点基本初等函数的导数公式题点常数、幂函数的导数答案c解析点(2,8)在切线上,2kb8,又y|x232212k,由可得k12,b16,kb28.7已知曲线yln x的切线过原点,则此切线的斜率为()ae be c. d考点基本初等函数的导数公式题点指数函数、对数函数的导数答案c解析设切点坐标为(x0,ln x0),则切线的斜率为,又切线斜率可表示为,则x0e,切线的斜率为. 8设f0(x)sin x,f1(x)f0(x),f2(x)f1(x),fn1(x)fn(x),nn,则f2 016(x)等于()asin x bsin xccos x dcos x考点基本初等函数的导数公式题点正弦余弦函数的导数答案a解析f1(x)f0(x)(sin x)cos x,f2(x)f1(x)(cos x)sin x,f3(x)f2(x)(sin x)cos x,f4(x)(cos x)sin x,f5(x)(sin x)f1(x),f6(x)f2(x),fn4(x)fn(x),可知周期为4,f2 016(x)f5044(x)sin x.二、填空题9已知f(x),g(x)mx且g(2),则m_.考点几个常用函数的导数题点几个常用函数导数的应用答案4解析f(x),g(x)m,f(2),又g(2),m4.10设曲线yex在点(0,1)处的切线与曲线y(x0)上点p处的切线垂直,则p的坐标为_考点基本初等函数的导数公式题点指数函数、对数函数的导数答案(1,1)解析因为yex,所以曲线yex在点(0,1)处的切线的斜率k1e01.设p(m,n),y(x0)的导数为y(x0),曲线y(x0)在点p处的切线斜率k2(m0)因为两切线垂直,所以k1k21,所以m1,n1,则点p的坐标为(1,1)11已知f(x)cos x,g(x)x,则关于x的不等式f(x)g(x)0的解集为_考点基本初等函数的导数公式题点正弦、余弦函数的导数答案解析f(x)sin x,g(x)1,由f(x)g(x)0,得sin x10,即sin x1,则sin x1,解得x2k,kz,其解集为.12若曲线yx在点(a,a)处的切线与两个坐标轴围成的三角形的面积为18,则a_.考点几个常用函数的导数题点几个常用函数导数的应用答案64解析yx,yx,曲线在点(a,a)处的切线斜率ka,切线方程为yaa(xa)令x0,得ya;令y0,得x3a,该切线与两坐标轴围成的三角形的面积为s3aaa18,a64.三、解答题13点p是曲线yex上任意一点,求点p到直线yx的最小距离考点基本初等函数的导数公式题点指数函数、对数函数的导数解如图,当曲线yex在点p(x0,y0)处的切线与直线yx平行时,点p到直线yx的距离最近,则曲线yex在点p(x0,y0)处的切线斜率为1,又y(ex)ex,所以ex01,得x00,代入yex,得y01,即p(0,1)利用点到直线的距离公式得最小距离为.四、探究与拓展14设函数f(x)在(0,)内可导,且f(ex)xex,则f(1)等于()a1 b2c3 d4考点基本初等函

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论