2.1圆的标准方程.doc_第1页
2.1圆的标准方程.doc_第2页
2.1圆的标准方程.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

圆的标准方程(课堂实录)南郑县高台中学 蒋海兵师:让我们来看一下生活中常见的一些事物(通过课件展示生活中的圆),这些都是什么图形?生:圆。师:对,远在我们生活中很常见,也代表着很美的东西,完美无缺,十全十美,都是指的圆,圆是很美的曲线,那么我们今天从另一个角度来研究圆。(一)复习提问师:在初中,大家学习了圆的概念,哪一位同学来回答?生:平面内与一定点距离等于定长的点的轨迹称为圆.师:这是高中的概念。(教师在课件上画圆)改变半径大小,和圆心的位置,圆发生了变化,这说明了什么?生:半径决定大小,圆心决定位置。师:对:图哪个点是定点?哪个点是动点?动点具有什么性质?圆心和半径都反映了圆的什么特点?生:圆心C是定点,圆周上的点M是动点,它们到圆心距离等于定长|MC|=r,圆心和半径分别确定了圆的位置和大小。师:求曲线的方程的一般步骤是什么?其中哪几个步骤必不可少?生:求曲线方程的一般步骤为:(1)建立适当的直角坐标系,用(x,y)表示曲线上任意点M的坐标,简称建系设点;(如图)(2)写出适合条件P的点M的集合P=M|P(M)|,简称写点集;(3)用坐标表示条件P(M),列出方程f(x,y)=0,简称列方程;(4)化方程f(x,y)=0为最简形式,简称化简方程;(5)证明化简后的方程就是所求曲线的方程,简称证明其中步骤(1)(3)(4)必不可少师:下面我们用求曲线方程的一般步骤来建立圆的标准方程(请一位同学板演)生:因为C是定点,可设C(a,b)、半径r,且设圆上任一点M坐标为(x,y)根据定义,圆就是集合P=M|MC|=r由两点间的距离公式得:将上式两边平方得:(x-a)2+(y-b)2=r2 (1)方程(1)就是圆心是C(a,b)、半径是r的圆的方程我们把它叫做圆的标准方程师:非常好,有无不同建立坐标系的方法生:有,圆心为坐标原点。师:这两种建立坐标系的方法都对,原点在圆心这是特殊情况,我们主要研究一般情况请大家思考下面一个问题圆的方程形式有什么特点?当圆心在原点时,圆的方程是什么?生:这是二元二次方程,展开后没有xy项,括号内变数x,y的系数都是1点(a,b)、r分别表示圆心的坐标和圆的半径当圆心在原点即C(0,0)时,方程为 x2+y2=r2师:圆心和半径分别确定了圆的位置和大小,从而确定了圆,所以,只要a,b,r三个量确定了且r0,圆的方程就给定了这就是说要确定圆的方程,必须具备三个独立的条件注意,确定a、b、r,可以根据条件,利用待定系数法来解决那么下面来做一下练习。1说出下列圆的圆心和半径:(学生回答)(1)(x-3)2+(y-2)2=5;(2)(2x+4)2+(2y4)2=8;(3)(x+2)2+ y2=m2 (m0)师:已知圆的标准方程,要能够熟练地求出它的圆心和半径2、(1)圆心是(3,3),半径是2的圆是_.(2)以(3,4)为圆心,且过点(0,0)的圆的方程为( ) A x2+y2= 25 B x2+y2= 5 C (x+3)2+(y+4)2= 25 D (x-3)2+(y-4)2= 25生: (1)(x-3)2+(y3)2=4;(2)D.师:要求能够用圆心坐标、半径长熟练地写出圆的标准方程那么我们再来看一下这一道题例1求满足下列条件各圆的方程:(1) 求以C(1,3)为圆心,并且和直线相切的圆的方程(2) 圆心在x轴上,半径为5且过点(2,3)的圆。师:如果要求一个圆,你要找些生么?生:圆心和半径。师:但是(2)中能不能直接找到圆心?生:不能。是:那用什么方法呢?生:待定系数法。师:非常好,下面同学们自己算一算。生(板演):解:(1)已知圆心坐标C(1,3),故只要求出圆的半径,就能写出圆的标准方程 因为圆C和直线相切,所以半径就等于圆心C到这条直线的距离 根据点到直线的距离公式,得因此,所求的圆的方程是 (2)设圆心在x轴上半径为5的圆的方程为(x-a)2+y2=25点A(2,3)在圆上(2a)2+32=25a=-2或6所求圆的方程为(x2)2+y2=25或(x-6)2+y2=25师:求圆的方程的方法(1)定义法 (2) 待定系数法,要确定a,b,r;我们来做做练习。1、 以C(3,-5)为圆心,且和直线3x-7y+2=0相切的圆的方程_.生:(x3)2+(y+5)2=32。师:上一题,我们是知道圆的切线,求圆的方程,那我能不能把原来的结论和条件互换一下,知道圆,秋切线方程?下面我们来看一下例2 例2已知圆的方程,求经过圆上一点的切线方程师:该怎么做呢? 生:知道点M,找斜率。师:还应该注意些什么?生:斜率不存在时。师:为了避免这些,我们可不可以用其他的方法来做。生思考后:勾股定理,向量。师:(把学生分成三组分别用三种方法做)最后得出:师:这个点是在圆上,如果是在圆外又该怎么做呢?(提示学生用待定系数法)变式一:已知圆的方程为x2+y2= 1,求过点(2,2)的切线方程。变式二:已知圆的方程为(x-1)2+(y+1)2=1 ,求过点(2,2)的切线方程。师:同学们来做一下练习1.已知圆求:(1)过点A(4,-3)的切线方程是_.(2)过点B(-5,2)的切线方程是_生:(1)4x-3y=25;(2)x=-5或21x-20y+145=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论