




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
论文体能测试时间安排优 化课程设计(定稿) 体能测试时间安排优化 一、摘要体能测试时间安排优化设计问题是学校常见的设计模型之一,本论文本着优化体能测试时间表,达到测试时间段最少,且尽量节省学生等待时间的目的。 在时间表没有和学生上课时间冲突即学生都能服从按排的条件下,将测试仪器充分利用,以达如何安排班级体能测量的分配方案。 首先将问题分解为问题一先对所给条件和数据进行分析,发现台阶测量所用的时间最长,需等待的时间最长,所以以台阶测量仪器的测量人数和时间为基准。 因为每次测量台阶的人数最多为10人,每台只能同时测量5人,为了省去学号录入时间我将5名学号相连的同学分为一组。 用一个表进行排列,找出每轮测量的人数,每轮测量所用最少时间,同学等待测量时间最短以及他们之间的关系。 第1列表示时间,起始时间为0秒,间隔时间为5秒,因为5秒和每台测量仪器的测量时间有关系,第2列到第10列分别是测量仪器(A1,A2,A3,B,C,D1,D2,E1,E2),先将第两组同学安排到E1和E2进行测试,考虑到测试E1和E2的时间太长,所以我只安排两组同学去进行其它项的测量,从仪器最少所需时间最长的仪器开始安排,让这两个组分别去B,C,D1,D2,A1,A2,A3进行测量,等测量台阶的两组同学测量完毕后,这两个组在去测量台阶,测量台阶的两组在去测量其余四项。 具体排列见表1。 这样排列每轮能测量20名同学,用时430秒。 这样的方法最适合20人的班级,考虑到班级人数的不同,我们对班级用C程序进行了分类和优化组合,让班级等待时间和整体测量间最小。 所有班级分为三类,每类班级都按照表1的方法进行轮转测量,再根据每类班级的特点列出公式计算出每个班级的测量安排时间。 问题二根据问题一的出的结果进行数据分析从而得出对学校提出的建议。 学校应该充分利用场地容量大的条件,在引进一定的数量的测量仪器,使每轮测试的学生人数达到最大,最好一次能进行1到3个班级的测量,这样可以有效的缩减班级学生测试的等待时间和整体测试时间。 二、问题重述某校按照教学计划安排各班学生进行体能测试,以了解学生的身体状况。 测试包括身高与体重、立定跳远、肺活量、握力和台阶试验共5个项目,均由电子仪器自动测量、记录并保存信息。 该校引进身高与体重测量仪器3台,立定跳远、肺活量测量仪器各1台,握力和台阶试验测量仪器各2台。 身高与体重、立定跳远、肺活量、握力4个项目每台仪器每个学生的平均测试(包括学生的转换)时间分别为10秒、20秒、20秒、15秒,台阶试验每台仪器一次测试5个学生,需要3分30秒。 每个学生测试每个项目前要录入个人信息,即学号,平均需时5秒。 仪器在每个学生测量完毕后学号将自动后移一位,于是如果前后测试的学生学号相连,就可以省去录入时间,而同一班学生的学号是相连的。 学校安排每天的测试时间为8001210与13301645两个时间段。 5项测试都在最多容纳150个学生的小型场所进行,测试项目没有固定的先后顺序。 参加体能测试的各班人数见附表。 学校要求同一班的所有学生在同一时间段内完成所有项目的测试,并且在整个测试所需时间段数最少的条件下,尽量节省学生的等待时间。 请你用数学符号和语言表述各班测试时间安排问题,给出该数学问题的算法,尽量用清晰、直观的图表形式为学校工作人员及各班学生表示出测试时间的安排计划,并且说明该计划怎样满足学校的上述要求和条件。 最后,请对学校以后的体能测试就以下方面提出建议,并说明理由如引进各项测量仪器的数量;测试场所的人员容量;一个班的学生是否需要分成几个组进行测试等。 附表参加体能测试的各班人数班号123456789101112131415人数414544442644422020383725454545班号161718192021222324252627282930人数442030393538382825303620243233班号313233343536373839404142434445人数413351392020443738394240375050班号4647484950515253545556人数4243414245421939751717 三、模型假设 1、所有测量仪器一切正常,测试过程中无外界因素的干扰,仪器皆按时投入工作,不出现故障。 测量过程中不会出现问题; 2、台阶测量器不轮空; 3、每个测量班级、学生都严格遵守测量时间安排表; 4、每台测量仪器的间距要保持在小于5秒的路程; 5、只要一个班的同学在同一小组必定学号相连。 6、假设测试过程中每位同学体能的消耗不影响测试。 7、假设负责测试的老师都能提前到岗,每位同学都可以准时到达测试地点。 8、假设每个同学都是一次通过测试,不出现误测的情况。 四、符号定义A1第一台身高与体重测量仪器;A2第二台身高与体重测量仪器;A3第三台身高与体重测量仪器;B跳远测量仪器;C肺活量测量仪器;D1第一台握力测量仪器;D2第二台握力测量仪器;E1第一台台阶测量仪器;E2第二台台阶测量仪器;L学生学号录入时间(5s);,:每个班级测量所用的时间(i,j=1,2,356);,每个班级的人数(i,j=1,2,3,56); 五、问题的分析与建模因为测量台阶所需时间最长,所以不让台阶测量仪器轮空,以测量台阶的人数和时间为基准将每5名同学分为一个小组,分4个小组( 1、 2、 3、4),每个小组的成员学号都是相连的,每两个相连的小组最后一名同学的学号和下一组的第一名同学学号也是相连的,每一轮测量可以完成4个小组的测量,即20名同学。 先让 1、3两个小组去参加台阶的测量,排列 2、4两个小组去才加其余4项测量,等 1、3小组台阶测量完毕后,再进行互换。 具体结果见表1。 表1第一列表示时间,比如“0”表示第0秒的时候,比如“60”表示第60秒的时候,我选择了5秒的时间间隔,因为5秒与每台测量仪器的测量时间(10s,20s,15s)和学生录入时间L(5s)有关。 表格中的数字全部为学生学号,比如第6个学生我就用“6”来表示,就“6”放在第B列,对应的是5秒的时间行,就表示第5秒的时候6号学生去参加跳远的测量。 1、2A1A2A3B CD1D2E1E20L L L L 56161、 2、 3、 4、 511、 12、 13、 14、15101520257173035404581850L L55616606591970717758085102081890L L95616100919105717L L11016611581810xx012591913017713510xx0145150188155160165170199175180185190xx195xx05210215L L 6、 7、 8、 9、 1016、 17、 18、 19、202xx1225230235240212245250255260313265L L270111275280414285212290295300515313305L L310111315414320212LL325111330313515335340414345122350515355360365133370375380385144390395400405155410415420425430由表1可以得出,每轮测量需要花费430秒的时间,每轮最多完成20名同学。 所以20个人的班级等待的时间最短,但是由附表可知每个班级人数不一致,为了节余整体测量时间规划为三类计算。 第一类,班级人数刚好是20的倍数;第二类,班级人数能整除5的班级;第三类,剩余的班级。 六、模型求解编写程序计算出三类里班级的班号和对应的人数#include3main()Int i,a56=41,45,44,44,26,44,42,20,20,38,37,25,45,45,45,44,20,30,39,35,38,38,28,25,30,36,20,24,32,33,41,33,51,39,20,20,44,37,38,39,42,40,37,50,50,42,43,41,42,45,42,19,39,75,17,17;for(i=0;i56;i+)if(ai%20=0)printf(one:class:%d,number:%d,i+1,ai);/*输出第一类班级的班号和对应的人数*/else if(ai%5=0)printf(two:class:%d,number:%d,i+1,ai);/*输出第二类班级的班号和对应的人数*/else printf(three:class:%d,number:%d,i+1,ai);/*输出第三类班级的班号和对应的人数*/程序已经过调试,远行成功。 统计结果并做数据分析表2为第一类的班级;班号891727353642人数20202020202040观察表2可以看出,每个班的人数正好是每轮参加测量人数的整数倍,所以可以得出每个班级测量所花费的时间为=430*(/20);由上面的公式可以按排出第一类班级的测量时间如表3班号891727353642人数20202020202040测量时间8:008:07:108:07:108:14:208:14:208:21:308:21:308:28:408:28:408:35:508:35:508:43:008:43:008:57:20表4为第二类的班级;班号2121314151820242544455054人数45254545453035253050504575观察表4可以看出每个班级参加完一轮或两轮测量后,还有剩余人数,且剩余人数都为5,10,15,正好同班同学可以分在一个小组中。 可以先将两个班人数相加是20的倍数的两个班级放在一起进行测量,比如可先将2号班和20号班放在一起进行测量,则2号班进行2轮测量后剩余5名同学可以先和20号班的前15名同学进行测量,这样就可以节省整个测量时间,依次论推。 如果没有这样的班级存在了,那就将他们班级人数除20得到的余数相加等于20的班级放在一起进行测量,但是班级总数不能大于150人,这样可以缩短班级同学的等待时间。 具体算法如下2号班和20号班一起测量的时间T=430*(+)/20=1720(s)=430*(/20取整)+430=1290(s)=430*(/20取整)+430=860(s)他们剩余人数共测量了一轮,即430秒。 测量时为了节省班级学生的等待时间,可以先测量2号班的前40名同学,等这40名同学测量完毕后20号班进场参加测量,这时测量2号班余下的5名学生和20号班前15名学生,测量完毕后在测量20号班的后20名学生,再由表3可知道上一班级测量完毕的时间是85720;现在可以得出2号班安排测量的时间为8:57:209:18:50因为20号班和2号班有430秒的共享时间,所以要用2号班测量完毕的时间先减去430秒得到测量开始时间,然后在加上测量所需的秒,得到20号班级安排测量时间为9:11:409:26:00;每个班的测量所用时间就为=430*(/20取整)+430;由次方法可以计算出14号,54号,18号,25号,44号,45号的测量安排时间具体结果见表5。 将剩余的5个班级化为两次计算,可以先将13号,12号,15号,24号班合并在一起计算,为了节省整段的测量时间和班级的等待时间,先测量13号班的前40名学生,然后测量13号余下的5名学生和12号,15号,24号前5名学生,最后依次测量12号,15号,24号班剩下的学生;根据该过程计算出这四个班安排测量时间具体结果如表5。 当24号班测量完后是11:56:30,早晨已经不能完成50号班级的测量,将50号班化到第3类计算,这时早上剩余时间只够完成一轮的测量,可以从第3类班级中选出一个小于20人的班级进行测量。 第二类班级的测量时间安排如表5班号2xx541825人数453545753030测量时间8:57:209:18:509:11:409:26:009:26:009:47:309:40:2010:09:0010:09:0010:23:xx:16:1010:30:30班号444513121524人数505045254525测量10:30:3010:44:5011:06:2011:20:4011:20:4011:20:40时间10:52:0011:06:xx:27:5011:35:0011:49:xx:56:30班号56人数17测量时间11:56:3012:03:40表6为第三类的班级;班号134567101116192122232628人数414444264442383744393838283624班号293031323334373839404143464748人数323341335139443738394237424341班号49515253555650人数41335139171745选择56号班进行早晨最后的测量,只需一轮测量时间所以56号班的测量安排时间为11:56:3012:03:40将剩余的班级进行优化组合,以两个班人数之和是20倍数的班级进行一起测量;组合结果如下1号和19号;3号和26号;7号和10号;31号和34号;40号和48号;49号和53号;39号和46号;43号和47号;23号和29号;21号和41号;他们每班合测学生进行测量只在台阶测量时多输入一次录入时间L,所以他们剩余学生的共测时间为430+L;每个班的测量所用时间就为=430*(/20取整)+430+L;下面的班级从下午开始安排测量。 结合第二类学生的算法可以得出这些班级的测量安排时间如表7(从表中43号班开始以后的测量时间都是第二天的时间。 )班号119326710人数413944364238测量时间13:30:0013:51:3513:44:2013:58:4513:58:4514:20:xx:13:0014:27:3014:27:3014:49:0514:41:4014:56:15班号313440484953人数413939414139测量时间14:56:1515:07:5015:00:3515:15:0015:15:0015:29:2515:22:1015:43:4515:43:4516:05:xx:58:0516:12:30班号394643472329人数384237432832测量时间16:12:3016:26:5516:19:4016:41:108:00:008:14:258:07:108:28:458:28:458:43:108:35:558:50:20班号2141人数3842测量时间8:50:209:04:458:57:309:19:05将剩余班级列出如表8班号456111622283032333738515255人数442644374438243333514437335117班号50人数45下面将表的班级进行优化合并,让多个班级合并后的人数是20的倍数,并且和小于150人,合并得到的结果为:33号,37号,50号;最后将不满足上述条件的班按最接近两或三个班级合并后除20得到余数最接近20,并且只能共测一轮的班级合并,得到结果为5号,51号;16号,32号;28号,52号;4号,30号;最后把剩余的6号,11号,55号,38号,22号进行分别测量。 合并的班级多录入学号的时间为几个班乘以L,设合并班级的数为2N,则可得公式为=430*(/20取整)+430+2*N*L;剩余人数共测所花时间为430+2*N*L;现在可以安排出最后这些班级的测量时间如表9班号333750551人数514445
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 解析卷云南省宣威市中考数学真题分类(平行线的证明)汇编专题测试试题(含解析)
- 2025年广播媒体融合发展报告:新媒体环境下转型挑战与机遇
- 物业管理合同法律法规解读
- 推拿治疗学考试题库附参考答案详解【培优b卷】
- 2025版潲水回收与废弃物资源化利用项目承包合同
- 2025年度发展和改革委员会高新技术产业发展合作合同
- 2025版商品房买卖合同智能家居系统安全评估及风险防控合同
- 2025年度智能交通管理系统开发合同
- 2025年度生态旅游区土石方运输及绿化工程合同
- 2025版金融行业招投标保密协议书
- 崔允漷教授学历案:微培训课件设计
- 企业合规管理培训课件讲义
- 《资本论》讲稿课件
- 幼儿园大班美术:《线条画:花》课件
- 燃气具安装维修工(中级)教学课件完整版
- 护理品管圈QCC之提高手术物品清点规范执行率
- 高尔夫基础培训ppt课件
- 有机化学第五章 脂环烃
- 微型钢管桩专项施工方案
- 铁路货物装载加固规则
- 机械加工的常用基础英语名词术语翻译对照大全
评论
0/150
提交评论