四川各市2013中考数学分类解析 专题06函数的图像与性质.doc_第1页
四川各市2013中考数学分类解析 专题06函数的图像与性质.doc_第2页
四川各市2013中考数学分类解析 专题06函数的图像与性质.doc_第3页
四川各市2013中考数学分类解析 专题06函数的图像与性质.doc_第4页
四川各市2013中考数学分类解析 专题06函数的图像与性质.doc_第5页
已阅读5页,还剩75页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题6:函数的图像与性质一、选择题1. (2013年四川巴中3分)已知二次函数(a0)的图象如图所示,则下列结论中正确的是【 】Aac0 B当x1时,y随x的增大而减小 Cb2a=0 Dx=3是关于x的方程(a0)的一个根2. (2013年四川达州3分)二次函数的图象如图所示,反比例函数与一次函数在同一平面直角坐标系中的大致图象是【 】3. (2013年四川广安3分)已知二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1下列结论:abc0,2a+b=O,b24ac0,4a+2b+c0其中正确的是【 】A B只有 C D4. (2013年四川乐山3分)如图,已知第一象限内的点A在反比例函数上,第二象限的点B在反比例函数上,且OAOB,则k的值为【 】A3 B6 C4 D5. (2013年四川凉山4分)如图,正比例函数与反比例函数相交于点E(,2),若,则的取值范围在数轴上表示正确的是【 】6. (2013年四川眉山3分)若实数a,b,c满足a+b+c=0,且abc,则函数y=cx+a的图象可能是【 】当,时,函数的图象经过第一、二、四象限;当,时,函数的图象经过第二、三、四象限。 因此,由函数的,故它的图象经过第一、三、四象限。故选C。7. (2013年四川内江3分)若抛物线与y轴的交点为(0,3),则下列说法不正确的是【 】A抛物线开口向上 B抛物线的对称轴是x=1 C当x=1时,y的最大值为4 D抛物线与x轴的交点为(1,0),(3,0)8. (2013年四川内江3分)同时抛掷A、B两个均匀的小立方体(每个面上分别标有数字1,2,3,4,5,6),设两立方体朝上的数字分别为x、y,并以此确定点P(x,y),那么点P落在抛物线上的概率为【 】A B C D【答案】A。【考点】二次函数图象上点的坐标特征,列表法或树状图法,概率。【分析】根据题意,画出树状图如下: 9. (2013年四川内江3分)如图,反比例函数(x0)的图象经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为【 】A1 B2 C3 D410. (2013年四川南充3分)如图,函数与的图象相交于点A(1,2)和点B,当时,自变量x的取值范围是【 】A. x1 B. 1x0 C. 1x0 或x1 D. x1或0x111. (2013年四川攀枝花3分)二次函数y=ax2+bx+c(a0)的图象如图所示,则函数与y=bx+c在同一直角坐标系内的大致图象是【 】12. (2013年四川遂宁4分)已知反比例函数的图象经过点(2,2),则k的值为【 】A4 B C4 D213. (2013年四川雅安3分)二次函数的图象如图所示,则一次函数与反比例函数在同一平面直角坐标系中的大致图象为【 】14. (2013年四川宜宾3分)某棵果树前x年的总产量y与x之间的关系如图所示,从目前记录的结果看,前x年的年平均产量最高,则x的值为【 】A3 B5 C7 D915. (2013年四川宜宾3分)对于实数a、b,定义一种运算“”为:,有下列命题:13=2;方程x1=0的根为:x1=2,x2=1;不等式组的解集为:1x4;点在函数的图象上其中正确的是【 】A B C D16. (2013年四川资阳3分)如图,抛物线y=ax2+bx+c(a0)过点(1,0)和点(0,2),且顶点在第三象限,设P=ab+c,则P的取值范围是【 】A4P0 B4P2 C2P0 D1P0二、填空题1. (2013年四川达州3分)点、在反比例函数的图象上,当时,则k的取值可以是(只填一个符合条件的k的值).2. (2013年四川德阳3分)已知二次函数的图象如图所示,有下列5个结论:abc0;bac;4a2b+c0;2c3b;abm (amb)(m1的实数)。其中正确结论的序号有 。,故,即,故此选项错误。综上所述,正确。3. (2013年四川广安3分)已知直线(n为正整数)与坐标轴围成的三角形的面积为Sn,则S1+S2+S3+S2012= 4. (2013年四川泸州4分)如图,点P1(x1,y1),点P2(x2,y2),点Pn(xn,yn)在函数(x0)的图象上,P1OA1,P2A1A2,P3A2A3,PnAn1An都是等腰直角三角形,斜边OA1,A1A2,A2A3,An1An都在x轴上(n是大于或等于2的正整数),则点P3的坐标是;点Pn的坐标是(用含n的式子表示)5. (2013年四川眉山3分)如图,在函数(x0)和(x0)的图象上,分别有A、B两点,若ABx轴,交y轴于点C,且OAOB,SAOC=,SBOC=,则线段AB的长度= 6. (2013年四川绵阳4分)二次函数y=ax2+bx+c的图象如图所示,给出下列结论:2a+b0;bac;若1mn1,则m+n;3|a|+|c|2|b|其中正确的结论是 (写出你认为正确的所有结论序号)综上所述,正确的结论是。7. (2013年四川资阳3分)在一次函数y=(2k)x+1中,y随x的增大而增大,则k的取值范围为 8. (2013年四川自贡4分)如图,在函数的图象上有点P1、P2、P3、Pn、Pn+1,点P1的横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点P1、P2、P3、Pn、Pn+1分别作x轴、y轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为S1、S2、S3、Sn,则S1= ,Sn= (用含n的代数式表示);三、解答题1. (2013年四川巴中10分)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k0)的图象与反比例函数的图象交于一、三象限内的A、B两点,直线AB与x轴交于点C,点B的坐标为(6,n),线段OA=5,E为x轴正半轴上一点,且tanAOE=(1)求反比例函数的解析式;(2)求AOB的面积2. (2013年四川巴中12分)如图,在平面直角坐标系中,坐标原点为O,A点坐标为(4,0),B点坐标为(1,0),以AB的中点P为圆心,AB为直径作P的正半轴交于点C(1)求经过A、B、C三点的抛物线所对应的函数解析式;(2)设M为(1)中抛物线的顶点,求直线MC对应的函数解析式;(3)试说明直线MC与P的位置关系,并证明你的结论3. (2013年四川达州8分)已知反比例函数的图象与一次函数的图象交于A、B两点,连结AO。(1)求反比例函数和一次函数的表达式;(2)设点C在y轴上,且与点A、O构成等腰三角形,请直接写出点C的坐标。4. (2013年四川达州8分)今年,6月12日为端午节。在端午节前夕,三位同学到某超市调研一种进价为2元的粽子的销售情况。请根据小丽提供的信息,解答小华和小明提出的问题。(1)小华的问题解答:;(2)小明的问题解答:。5. (2013年四川达州12分)如图,在直角体系中,直线AB交x轴于点A(5,0),交y轴于点B,AO是M的直径,其半圆交AB于点C,且AC=3。取BO的中点D,连接CD、MD和OC。(1)求证:CD是M的切线;(2)二次函数的图象经过点D、M、A,其对称轴上有一动点P,连接PD、PM,求PDM的周长最小时点P的坐标;(3)在(2)的条件下,当PDM的周长最小时,抛物线上是否存在点Q,使?若存在,求出点Q的坐标;若不存在,请说明理由。6. (2013年四川德阳10分)如图,直线与双曲线交于C、D两点,与x轴交于点A.(1)求n的取值范围和点A的坐标;(2)过点C作CBy轴,垂足为B,若S ABC4,求双曲线的解析式;(3)在(1)、(2)的条件下,若AB,求点C和点D的坐标并根据图象直接写出反比例函数的值小于一次函数的值时,自变量x的取值范围利用勾股定理求出OB的长,确定出B坐标,进而确定出C坐标,将C代入直线解析式求出k的值,确定出一次函数解析式,与反比例解析式联立求出D的坐标,由C,D两点的横坐标,利用图象即可求出反比例函数的值小于一次函数的值时,自变量x的取值范围。7. (2013年四川德阳11分)一项工程,甲队单独做需40天完成,若乙队先做30天后,甲、乙两队一起合做20天恰好完成任务,请问:(1)乙队单独做需要多少天才能完成任务?(2)现将该工程分成两部分,甲队做其中一部分工程用了x天,乙队做另一部分工程用了y天,若x; y都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,那么两队实际各做了多少天?8. (2013年四川德阳14分)如图,在平面直角坐标系中有一矩形ABCO(O为原点),点A、C分别在x轴、y轴上,且C点坐标为(0,6),将BCD沿BD折叠(D点在OC边上),使C点落在DA边的E点上,并将BAE沿BE折叠,恰好使点A落在BD边的F点上(1)求BC的长,并求折痕BD所在直线的函数解析式;(2)过点F作FGx轴,垂足为G,FG的中点为H,若抛物线经过B,H, D三点,求抛物线解析式;(3)点P是矩形内部的点,且点P在(2)中的抛物线上运动(不含B, D点),过点P作PNBC,分别交BC 和 BD于点N, M,是否存在这样的点P,使如果存在,求出点P的坐标;如果不存在,请说明理由9. (2013年四川广安6分)已知反比例函数(k0)和一次函数y=x6(1)若一次函数与反比例函数的图象交于点P(2,m),求m和k的值(2)当k满足什么条件时,两函数的图象没有交点?【答案】解:(1)一次函数和反比例函数的图象交于点P(2,m),m=26,解得m=4。点P(2,4)。10. (2013年四川广安8分)某商场筹集资金12.8万元,一次性购进空调、彩电共30台根据市场需要,这些空调、彩电可以全部销售,全部销售后利润不少于1.5万元,其中空调、彩电的进价和售价见表格设商场计划购进空调x台,空调和彩电全部销售后商场获得的利润为y元(1)试写出y与x的函数关系式;(2)商场有哪几种进货方案可供选择?(3)选择哪种进货方案,商场获利最大?最大利润是多少元?11. (2013年四川广安10分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A、B、C三点,已知点A(3,0),B(0,3),C(1,0)(1)求此抛物线的解析式(2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PDAB于点D动点P在什么位置时,PDE的周长最大,求出此时P点的坐标;连接PA,以AP为边作图示一侧的正方形APMN,随着点P的运动,正方形的大小、位置也随之改变当顶点M或N恰好落在抛物线对称轴上时,求出对应的P点的坐标(结果保留根号)12. (2013年四川乐山10分)如图,已知直线与反比例函数的图象交于A、B两点,与x 轴、y轴分别相交于C、D两点。(1)如果点A的横坐标为1,利用函数图象求关于x的不等式的解集;(2)是否存在以AB为直径的圆经过点P(1,0)?若存在,求出m的值;若不存在,请说明理由。13. (2013年四川乐山13分)如图1,已知抛物线C经过原点,对称轴与抛物线相交于第三象限的点M,与x轴相交于点N,且。(1)求抛物线C的解析式;(2)将抛物线C绕原点O旋转1800得到抛物线,抛物线与x轴的另一交点为A,B为抛物线上横坐标为2的点。若P为线段AB上一动点,PDy轴于点D,求APD面积的最大值;过线段OA上的两点E、F分别作x轴的垂线,交折线OBA于E1、F1,再分别以线段EE1、FF1为边作如图2所示的等边AE1E2、等边AF1F2,点E以每秒1个长度单位的速度从点O向点A运动,点F以每秒1个长度单位的速度从点A向点O运动,当AE1E2有一边与AF1F2的某一边在同一直线上时,求时间t的值。14. (2013年四川凉山8分)先阅读以下材料,然后解答问题:材料:将二次函数的图象向左平移1个单位,再向下平移2个单位,求平移后的抛物线的解析式(平移后抛物线的形状不变)。解:在抛物线上任取两点A(0,3)、B(1,4),由题意知:点A向左平移1个单位得到(,3),再向下平移2个单位得到(,1);点B向左平移1个单位得到(0,4),再向下平移2个单位得到(0,2)。设平移后的抛物线的解析式为。则点(,1),(0,2)在抛物线上。可得:,解得:。所以平移后的抛物线的解析式为:。根据以上信息解答下列问题:将直线向右平移3个单位,再向上平移1个单位,求平移后的直线的解析式。15. (2013年四川凉山12分)如图,抛物线(a0)交x轴于A、B两点,A点坐标为(3,0),与y轴交于点C(0,4),以OC、OA为边作矩形OADC交抛物线于点G(1)求抛物线的解析式;(2)抛物线的对称轴l在边OA(不包括O、A两点)上平行移动,分别交x轴于点E,交CD于点F,交AC于点M,交抛物线于点P,若点M的横坐标为m,请用含m的代数式表示PM的长;(3)在(2)的条件下,连结PC,则在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形和AEM相似?若存在,求出此时m的值,并直接判断PCM的形状;若不存在,请说明理由。16. (2013年四川泸州8分)如图,已知函数与反比例函数(x0)的图象交于点A将的图象向下平移6个单位后与双曲线交于点B,与x轴交于点C(1)求点C的坐标;(2)若,求反比例函数的解析式17. (2013年四川泸州12分)如图,在直角坐标系中,点A的坐标为(2,0),点B的坐标为(1,),已知抛物线y=ax2+bx+c(a0)经过三点A、B、O(O为原点)(1)求抛物线的解析式;(2)在该抛物线的对称轴上,是否存在点C,使BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;(3)如果点P是该抛物线上x轴上方的一个动点,那么PAB是否有最大面积?若有,求出此时P点的坐标及PAB的最大面积;若没有,请说明理由(注意:本题中的结果均保留根号)【答案】解:(1)将A(2,0),B(1,),O(0,0)三点的坐标代入y=ax2+bx+c(a0),得:18. (2013年四川眉山11分)如图,在平面直角坐标系中,点A、B在x轴上,点C、D在y轴上,且OB=OC=3,OA=OD=1,抛物线y=ax2+bx+c(a0)经过A、B、C三点,直线AD与抛物线交于另一点M(1)求这条抛物线的解析式;(2)P为抛物线上一动点,E为直线AD上一动点,是否存在点P,使以点A、P、E为顶点的三角形为等腰直角三角形?若存在,请求出所有点P的坐标;若不存在,请说明理由(3)请直接写出将该抛物线沿射线AD方向平移个单位后得到的抛物线的解析式19. (2013年四川绵阳12分)如图,已知矩形OABC中,OA=2,AB=4,双曲线(k0)与矩形两边AB、BC分别交于E、F(1)若E是AB的中点,求F点的坐标;(2)若将BEF沿直线EF对折,B点落在x轴上的D点,作EGOC,垂足为G,证明EGDDCF,并求k的值(4,),即可得CF=,BF=DF=2,在RtCDF中表示出CD,利用对应边成比例可求出k的值。20. (2013年四川绵阳12分)“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具某运动商城的自行车销售量自2013年起逐月增加,据统计,该商城1月份销售自行车64辆,3月份销售了100辆(1)若该商城前4个月的自行车销量的月平均增长率相同,问该商城4月份卖出多少辆自行车?(2)考虑到自行车需求不断增加,该商城准备投入3万元再购进一批两种规格的自行车,已知A型车的进价为500元/辆,售价为700元/辆,B型车进价为1000元/辆,售价为1300元/辆根据销售经验,A型车不少于B型车的2倍,但不超过B型车的2.8倍假设所进车辆全部售完,为使利润最大,该商城应如何进货?21. (2013年四川绵阳12分)如图,二次函数y=ax2+bx+c的图象的顶点C的坐标为(0,2),交x轴于A、B两点,其中A(1,0),直线l:x=m(m1)与x轴交于D(1)求二次函数的解析式和B的坐标;(2)在直线l上找点P(P在第一象限),使得以P、D、B为顶点的三角形与以B、C、O为顶点的三角形相似,求点P的坐标(用含m的代数式表示);(3)在(2)成立的条件下,在抛物线上是否存在第一象限内的点Q,使BPQ是以P为直角顶点的等腰直角三角形?如果存在,请求出点Q的坐标;如果不存在,请说明理由【考点】二次函数综合题,曲线上点的坐标与方程的关系,全等、相似三角形的判定和性质,等腰直角三角形的性质,反证法的应用,分类思想的应用。【分析】(1)由于抛物线的顶点C的坐标为(0,2),所以抛物线的对称轴为y轴,且与y轴交点的纵坐标为2,即b=0,c=2,再将A(1,0)代入y=ax2+bx+c,求出a的值,由此确定该抛物线的解析式,然后令y=0,解一元二次方程求出x的值即可得到点B的坐标。22. (2013年四川绵阳14分)我们知道,三角形的三条中线一定会交于一点,这一点就叫做三角形的重心重心有很多美妙的性质,如关于线段比面积比就有一些“漂亮”结论,利用这些性质可以解决三角形中的若干问题请你利用重心的概念完成如下问题:(1)若O是ABC的重心(如图1),连结AO并延长交BC于D,证明:;(2)若AD是ABC的一条中线(如图2),O是AD上一点,且满足,试判断O是ABC的重心吗?如果是,请证明;如果不是,请说明理由;(3)若O是ABC的重心,过O的一条直线分别与AB、AC相交于G、H(均不与ABC的顶点重合)(如图3),S四边形BCHG,SAGH分别表示四边形BCHG和AGH的面积,试探究的最大值【答案】解:(1)证明:如答图1所示,连接CO并延长,交AB于点E,点O是ABC的重心,CE是中线,点E是AB的中点。DE是中位线。DEAC,且DE=AC。DEAC,AOCDOE。如答图3,过点O作OFBC交AC于点F,过点G作GEBC交AC于点E,则OFGE。OFBC,。OF=CD=BC。GEBC,。23. (2013年四川内江10分)某地区为了进一步缓解交通拥堵问题,决定修建一条长为6千米的公路如果平均每天的修建费y(万元)与修建天数x(天)之间在30x120,具有一次函数的关系,如下表所示x506090120y40383226(1)求y关于x的函数解析式;(2)后来在修建的过程中计划发生改变,政府决定多修2千米,因此在没有增减建设力量的情况下,修完这条路比计划晚了15天,求原计划每天的修建费【答案】解:(1)设y与x之间的函数关系式为,由题意,得 ,解得:。24. (2013年四川内江12分)已知二次函数(a0)的图象与x轴交于A(x1,0)、B(x2,0)(x1x2)两点,与y轴交于点C,x1,x2是方程的两根(1)若抛物线的顶点为D,求SABC:SACD的值;(2)若ADC=90,求二次函数的解析式25. (2013年四川南充8分)某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:(1)求出y与x之间的函数关系式;(2)写出每天的利润W与销售单价x之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?26. (2013年四川南充8分)如图,二次函数y=x2+bx3b+3的图象与x轴交于A、B两点(点A在点B的左边),交y轴于点C,且经过点(b2,2b25b1).(1)求这条抛物线的解析式;(2)M过A、B、C三点,交y轴于另一点D,求点M的坐标;(3)连接AM、DM,将AMD绕点M顺时针旋转,两边MA、MD与x轴、y轴分别交于点E、F,若DMF为等腰三角形,求点E的坐标.27. (2013年四川攀枝花6分)如图,直线y=k1x+b(k10)与双曲线(k20)相交于A(1,2)、B(m,1)两点(1)求直线和双曲线的解析式;(2)若A1(x1,y1),A2(x2,y2),A3(x3,y3)为双曲线上的三点,且x10x2x3,请直接写出y1,y2,y3的大小关系式;(3)观察图象,请直接写出不等式k1x+b的解集28. (2013年四川攀枝花8分)某文具店准备购进甲,乙两种铅笔,若购进甲种钢笔100支,乙种铅笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元(1)求购进甲,乙两种钢笔每支各需多少元?(2)若该文具店准备拿出1000元全部用来购进这两种钢笔,考虑顾客需求,要求购进甲中钢笔的数量不少于乙种钢笔数量的6倍,且不超过乙种钢笔数量的8倍,那么该文具店共有几种进货方案?(3)若该文具店销售每支甲种钢笔可获利润2元,销售每支乙种钢笔可获利润3元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?29. (2013年四川攀枝花12分)如图,抛物线y=ax2+bx+c经过点A(3,0),B(1.0),C(0,3)(1)求抛物线的解析式;(2)若点P为第三象限内抛物线上的一点,设PAC的面积为S,求S的最大值并求出此时点P的坐标;(3)设抛物线的顶点为D,DEx轴于点E,在y轴上是否存在点M,使得ADM是直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由直线AC的解析式为:y=x3。设P点坐标为(x,x2+2x3),则点N的坐标为(x,x3),PN=PENE=(x2+2x3)+(x3)=x23x。SPAC=SPAN+SPCN,。当x= 时,S有最大值,此时点P的坐标为(,)。)或(0,1)或(0,3)。30. (2013年四川攀枝花12分)如图,在平面直角坐标系中,四边形ABCD是梯形,ABCD,点B(10,0),C(7,4)直线l经过A,D两点,且sinDAB=动点P在线段AB上从点A出发以每秒2个单位的速度向点B运动,同时动点Q从点B出发以每秒5个单位的速度沿BCD的方向向点D运动,过点P作PM垂直于x轴,与折线ADC相交于点M,当P,Q两点中有一点到达终点时,另一点也随之停止运动设点P,Q运动的时间为t秒(t0),MPQ的面积为S(1)点A的坐标为 ,直线l的解析式为 ;(2)试求点Q与点M相遇前S与t的函数关系式,并写出相应的t的取值范围;(3)试求(2)中当t为何值时,S的值最大,并求出S的最大值;(4)随着P,Q两点的运动,当点M在线段DC上运动时,设PM的延长线与直线l相交于点N,试探究:当t为何值时,QMN为等腰三角形?请直接写出t的值 31. (2013年四川遂宁10分)四川省第十二届运动会将于2014年8月18日在我市隆重开幕,根据大会组委会安排,某校接受了开幕式大型团体操表演任务为此,学校需要采购一批演出服装,A、B两家制衣公司都愿成为这批服装的供应商经了解:两家公司生产的这款演出服装的质量和单价都相同,即男装每套120元,女装每套100元经洽谈协商:A公司给出的优惠条件是,全部服装按单价打七折,但校方需承担2200元的运费;B公司的优惠条件是男女装均按每套100元打八折,公司承担运费另外根据大会组委会要求,参加演出的女生人数应是男生人数的2倍少100人,如果设参加演出的男生有x人(1)分别写出学校购买A、B两公司服装所付的总费用y1(元)和y2(元)与参演男生人数x之间的函数关系式;(2)问:该学校购买哪家制衣公司的服装比较合算?请说明理由 当参演男生少于200人时,购买B公司的服装比较合算;32. (2013年四川遂宁12分)如图,抛物线与x轴交于点A(2,0),交y轴于点B(0,)直线过点A与y轴交于点C,与抛物线的另一个交点是D(1)求抛物线与直线的解析式;(2)设点P是直线AD上方的抛物线上一动点(不与点A、D重合),过点P作 y轴的平行线,交直线AD于点M,作DEy轴于点E探究:是否存在这样的点P,使四边形PMEC是平行四边形?若存在请求出点P的坐标;若不存在,请说明理由;(3)在(2)的条件下,作PNAD于点N,设PMN的周长为l,点P的横坐标为x,求l与x的函数关系式,并求出l的最大值(2,3)和(4,)。33. (2013年四川雅安10分)如图,在平面直角坐标系中,一次函数(k0)的图象与反比例函数(m0)的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,6),点C的坐标为(2,0),且(1)求该反比例函数和一次函数的解析式;(2)求点B的坐标;(3)在x轴上求点E,使ACE为直角三角形(直接写出点E的坐标)【答案】解:(1)过点A作ADx轴于D,C的坐标为(2,0),A的坐标为(n,6), AD=6,CD=n+2。tanACO=2,解得:n=1。A(1,6)。34. (2013年四川雅安12分)如图,已知抛物线经过A(3,0),B(1,0),C(0,3)三点,其顶点为D,对称轴是直线l,l与x轴交于点H(1)求该抛物线的解析式;(2)若点P是该抛物线对称轴l上的一个动点,求PBC周长的最小值;(3)如图(2),若E是线段AD上的一个动点( E与A、D不重合),过E点作平行于y轴的直线交抛物线于点F,交x轴于点G,设点E的横坐标为m,ADF的面积为S求S与m的函数关系式;S是否存在最大值?若存在,求出最大值及此时点E的坐标; 若不存在,请说明理由35. (2013年四川宜宾10分)如图,直线与反比例函数的图象交于A、B两点,与x轴交于点C,已知点A的坐标为(1,m)(1)求反比例函数的解析式;(2)若点P

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论