




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
。 课 题二次根式全章综合复习 学习目标1、理解二次根式的概念,并利用(a0)的意义解答具体题目2、 理解(a0)是一个非负数和()2=a(a0)并利用它们进行计算和化简3、二次根式的运算与化简求值学习重点二次根式的性质及其运算知识点一:二次根式的概念【知识要点】 二次根式的定义:形如的式子叫二次根式,其中叫被开方数,只有当是一个非负数时,才9有意义【典型例题】 例1、下列各式1),其中是二次根式的是_(填序号)练习:1、下列各式中,一定是二次根式的是( )A、 B、 C、 D、2、在、中是二次根式的个数有_个例2、若式子有意义,则x的取值范围是 来源:学*科*网Z*X*X*K练习:1、使代数式有意义的x的取值范围是( ) A、x3 B、x3 C、 x4 D 、x3且x42、如果代数式有意义,那么,直角坐标系中点P(m,n)的位置在()A、第一象限B、第二象限C、第三象限D、第四象限例3、若y=+2009,则x+y= 练习:1、若,则xy的值为( )A1 B1 C2 D32、当取什么值时,代数式取值最小,并求出这个最小值。例4、已知a是整数部分,b是 的小数部分,求的值。练习:1、若的整数部分是a,小数部分是b,则 。2、若的整数部分为x,小数部分为y,求的值.知识点二:二次根式的性质【知识要点】 1. 非负性:是一个非负数注意:此性质可作公式记住,后面根式运算中经常用到2. 注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完全平方的形式:3. 注意:(1)字母不一定是正数 (2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替 (3)可移到根号内的因式,必须是非负因式,如果因式的值是负的,应把负号留在根号外4. 公式与的区别与联系 (1)表示求一个数的平方的算术根,a的范围是一切实数 (2)表示一个数的算术平方根的平方,a的范围是非负数 (3)和的运算结果都是非负的【典型例题】 例4、若则 练习:1、已知为实数,且,则的值为( )A3B 3C1D 12、已知直角三角形两边x、y的长满足x240,则第三边长为.3、若与互为相反数,则。4、 已知的值。 (公式的运用)例6、化简:的结果为( )A、42a B、0 C、2a4 D、4练习:1、在实数范围内分解因式: = ;= 2、化简: (公式的应用)例7、已知,则化简的结果是A、 B、C、D、 练习:1、 已知a0)4二次根式的除法法则:两个数的算术平方根的商,等于这两个数的商的算术平方根。=(a0,b0)【典型例题】 例14、能使等式成立的的x的取值范围是( )A、 B、 C、 D、无解知识点六:二次根式的加减【知识要点】 需要先把二次根式化简,然后把被开方数相同的二次根式(即同类二次根式)的系数相加减,被开方数不变。注意:对于二次根式的加减,关键是合并同类二次根式,通常是先化成最简二次根式,再把同类二次根式合并但在化简二次根式时,二次根式的被开方数应不含分母,不含能开得尽的因数【典型例题】 例15、(1) (2)知识点七:二次根式的混合计算与求值【知识要点】 1、确定运算顺序;2、灵活运用运算定律; 3、正确使用乘法公式;4、大多数分母有理化要及时;5、在有些简便运算中也许可以约分,不要盲目有理化;【典型习题】 例16、已知:,求的值练习:1、已知:,求的值2、已知、是实数,且,求的值3、已知,求的值 4、计算(21)()二次根式易错及高频考题1. 要使有意义,则x的取值范围是 2. 若y=+,则(x+y)2003= 3. 若最简根式与是同类二次根式,则m= 4. 若的整数部分是a,小数部分是b,则a= 5计算:=_;=_,=_6若1x2,则=_ 7 实数P在数轴上的位置如图所示:则=_.8、把中根号外的移人根号内得_ 9、若,则的取值范围是_10、若化简式子|1x|,则x的取值范围是_11、式子成立的条件是_12若,则的结果为_13若与化成最简二次根式后的被开方数相同,则的值为_14若,且成立的条件是_15若,则等于_ 16. 计算:的值是( )A. 0 B. C. D. 或17. 把的根号外的因式移到根号内等于 。18. 若,则等于( )A. B. C. D. 19、使式子有意义的未知数x有( )个 A0 B1 C2 D无数20、若,则等于( )(A)0 (B) (C) (D)0或21已知是实数,且,则与的大小关系是( )(A) (B) (C) (D)22. 已知,求的值。23.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- Unit 8 Life in the future说课稿-2025-2026学年初中英语八年级下册(2013秋审查)沪教牛津版(深圳·广州)
- 武术基本功教学教案(2025-2026学年)
- 教案人教版七年级下册语文教学计划(2025-2026学年)
- 第12课 建立自己的网站说课稿-2025-2026学年初中信息技术川教版八年级下册-川教版2018
- 室内与家具设计CAD教学计划试卷教案(2025-2026学年)
- 道路施工承包合同
- 清洁、消毒、灭菌说课稿-2025-2026学年中职专业课-基础护理-医学类-医药卫生大类
- 4.2 水的组成说课稿-2025-2026学年初中化学科粤版2012九年级上册-科粤版2012
- 演唱 妈妈格桑拉说课稿-2025-2026学年小学音乐三年级上册(2024)人音版(2024 主编:赵季平杜永寿)
- 四年级信息技术上册 第2课 神奇的“网上邻居”说课稿2
- 2025年题库红色知识竞赛题库全集及参考答案
- 规范垂直大模型质量验收规程
- 全国川教版信息技术八年级下册第一单元第1节 《设计创意挂件》教学设计
- 餐饮服务员工岗位培训教材汇编
- 2025年园林绿化工(二级)职业技能鉴定机考仿真500题(附答案)
- 2025至2030中国汽车配件行业现状供需分析及重点企业投资评估规划分析报告
- 广西邕衡教育名校联盟2026届高三上学期9月联合调研测试地理试卷(含答案)
- 北师版二年级上册数学(完整版)全册单元教材分析
- 故事教学探究课件
- 咳嗽变异性哮喘课件
- 护理领域新质生产力发展
评论
0/150
提交评论