




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Glossary 4 Block aerror arisk Accuracy Active opportunityordefect AdvocacyTeam AlternateHypothesis ANOVA ANOVAmethod GaugeR R Assignablecausevariation AttributeChart Attributedata Average Graphicaltooltoshowtherelationshipbetweenprocesscapability controlvariationduetooutsideinfluences See BlackNoise StatisticalProcessControl SPC chartfordiscretedata Includesp np canducharts Datathatcanbedescribedbylevels integervaluesorcategoriesonly SeeDiscretedata Thesumofalldatainasampledividedbythenumberofdatapointsinthesample SeeMean berror brisk Baselining Benchmarking BlackBelt BlackNoise Boxplot Brainstorming Centring CentringofXvariables CentralLimitTheorem Theerrormadeifsamenessisclaimed whentherealityisdifference e g acceptingbadparts Consumer sRisk Therisk probability ofmakingabetaerror frequentlysetat10 Evaluatingthecapabilityofaprocessasitstandstoday without tweaking i e passiveobservation Evaluatingthecapabilityofsimilarprocessestoquantifywhatconstitutes theBest ApersonwhosefulltimejobconsistsofapplicationofSixSigmatools methodsonprojects Processvariationdueto outsideinfluences SeeAssignableCauseVariation Graphshowingtheportionofadistributionbetweenthefirstandthirdpercentileswithina box Theboxplotalsoshowsthemedianofthedistributionandtheextremevalues Oftenusedtocomparepopulation AtechniqueusedbyanAdvocacyTeamto fore g developalistofpotentialX satthebeginningofproject Aprocesscharacteristicdescribinghowwellthemeanofthesamplecorrespondstothetargetvalue AmethodusedtotransformXvariablesinDoE sthatdevelophigherorder quadratic models reducescorrelationbetweenX s Afundamentalstatisticaltheoremstatingthatthedistributionofaveragesofacharacteristictendstobenormal evenwhentheparentpopulationishighlynon normal CentralCompositeDesign Champion ChampionReview Chi Squaredtest ClassicalYield CommonCauseVariation ComponentsSearch Confidence ConfidenceInterval Consumer ContinuousData ADesignofExperiments DoE methodwhereeachXistestedat5levels see StarPoints ACCDprovidesthecapabilitytomodelaprocesswithaquadraticequationORalinearequation Typicallyadirector someonewhocansupporttheSixSigmaprojectandhastheauthoritytoremovebarriersandprovideresources TakesanactivepartinProjectReview AregularmeetingtopresentSixSigmaprojects shareexperiencesandremoveroadblocks Hypothesistestfordiscretedata Evaluatestheprobabilitythatcountsindifferentcellsaredependentononeanother ortestsGoodnessofFittosomeaprioriprobabilitydistribution See FirstPassYield GoodunitsproduceddividedbyTotalUnitsProduced See WhiteNoise Theinherentvariationofaprocess freefromexternalinfluences Usuallymeasuredoverashorttimeperiod AmethodofscreeningforVitalFewX sinmanufacturedassemblies Alsoknownas PartSwapping Thecomplementofalpharisk Confidence 1 a Arangeofplausiblevaluesforapopulationparameter suchasmeanorstandarddeviation Theenduserofaproduct thehomeowner fore g Theconsumerisexternaltothebusiness Datathatcanbemeaningfullybrokendownintosmallerandsmallerincrements e g length temperatureetc ContourPlot ControlLimits CostofQuality Cp Cpk CQ CTQ CubePlot Customer DataWindow Defect DependentVariable AgraphusedtoanalyzeexperimentsofaCentralCompositeDesign TwoX scomprisetheaxes andlevelsofconstantYareshowninthebodyofgraph Resemblesatopographicalmap LinesonaStatisticalProcessControl SPC chartthatrepresentdecisioncriteriafortakingactionontheprocess Linesaredrawn 3standarddeviations s fromthemean Afinancialreconciliationofallthecostsassociatedwithdefects scrap rework concessionsetc StatisticusedtomeasureProcessCapability Assumesdataiscentredontarget SimilarinconcepttoZ stStatisticusedtomeasureProcessPerformance Doesnotassumecentreddata SimilarinconcepttoZ ltCommercialQuality Usedtocategorizenon manufacturingprojectsthatimpacttheconsumerand orcustomer Critical to Qualitycharacteristic Anaspectoftheproductorservicethatisimportanttothecustomer consumer Agraphusedforanalysisoftheresultsofafactorialdesignedexperiment DoE Showstestconditionsthatoptimizetheresponse Therecipientoftheoutputofaprocess Maybeinternal e g Assemblyisacustomeroffinishingshops orexternal e g Currys Bellingetc whothensellourproductstoconsumers ThespreadsheetwindowinMinitabwheredataisenteredforanalysis Anyaspectofapartorprocessthatdoesnotconformtorequirements Theoutputofaprocess The Y response DescriptiveStatistics DesignofExperiments DoE DiscreteData Dotplot DPMO DPO DPU e ExponentialFunction Entitlement ExecutiveSummary F test Mean StandardDeviation Varianceandothervaluescalculatedfromsamplecharacteristics Alsoincludesassortedgraphs Astatisticalfieldofstudywhereindependentvariables X s aresystematicallymanipulatedandtheresponseobserved UsedtodemonstratewhichX saretheVitalFew andtooptimizetheresponse Datathatcanonlybedescribedbylevels i e pass fail operatora b c integervalues e g numberofdefects Datathatcannotbebrokendownintofinerincrements Frequencydiagramrepresentingdataby dots alongahorizontalaxis Generallyusedasanalternativetoahistogramforsmallsamplesizes DefectsPerMillionOpportunities 1 000 000multipliedbytotalnumberofdefects dividedbythetotalnumberofopportunities Ametricfordefectsequivalenttoppmusedfordefectives DefectsPerOpportunity totalnumberofdefectsdividedbytotalnumberofopportunities UsedtoentertheNormalTabletoobtainZvalues Defectsperunit totalnumberofdefectsdividedbytotalnumberofunits UsedprimarilytocalculateRolledThroughputYield Y rt throughthePoissonformulaY rt e DPU Amathematicconstantroughlyequalto2 718Mathematicalidentity ln e 1Z stThebesttheprocesscanbe WhattheprocesswouldlooklikeifallAssignableCauseVariationwascontrolled ThefirstpageofoutputfromtheMinitabProcessCapabilityselection Atesttocomparevariancesof2ormoresamples andtocomparetheequalityoftwoormoremeans inANOVA FactorialExperiment FractionalFactorialExperiment FirstPassYield FMEA FunctionalOwner GaugeXBRmethod GanttChart GaugeR R GreenBelt Ha Ho Adesignedexperiment DoE whichinvolvestestingofallpossiblecombinationsofindependent X variables Adesignedexperiment DoE whichinvolvestestingafractionofallpossiblecombinationsofindependent X variablesinafullFactorialexperiment Resultsinfewertestruns See ClassicalYield Equaltothenumberofgoodunitsproduceddividedbythetotalnumberofunitsproduced FailureModeandEffectsAnalysis ateam basedprocedurethatidentifiesanddocumentsallpossiblefailuremodes effects causesandassociatedcorrectiveactions Thepersonwithfinancialresponsibilityfortheprocessunderconsideration GaugeR Rmethod anoptioninMinitab Aprojectmanagementtoolthatgraphsmilestonesvs thecalendar Barsareusedtoindicatebothplannedandactualdurationoftasks Ameansofdeterminingtheacceptabilityofthevariabilityinthegaugingsystemforuseintheprocess ApersonwhousesSixSigmatoolsandmethodologyinthecourseoftheirwork andwhoalwayshasaSixSigmaprojectactiveintheirplaceofwork AlternateHypothesis hypothesisofdifference Thehypothesisbeingproveninastatisticalhypothesistest Nullhypothesis hypothesisofsameness Thestartingassumptioninastatisticalhypothesistest NB Thenullhypothesiscannotbeproved Histogram HomogeneityofVariance Hypothesistest I MRChart IndependentVariable Inferentialstatistics InherentProcessCapability Interactionplot Afrequencydiagramcomposedofrectangularbarswhoserelativeheightsindicatethenumberofcounts orrelativefrequency ataparticularlevel AmenuselectioninMinitabunderwhichtheF test comparisonofvariances isperformedAnyofseveralstatisticaltestsof2ormoresamplesfrompopulations Usedtodetermineiftheobserveddifferencescanbeattributabletochancealone Theresultofthetestistoeitheracceptorrejectthealternatehypothesis Ha t test F testandChi Squaredtestareexamples Individual MovingRangechart aStatisticalProcessControl SPC chartinwhichtheuppergraphisusedtoplotindividualdatapointscomparedtocalculatedcontrollimits thelowergraph MovingRange plotsthedifferencebetweensequentialdataaspointsonthechart Controllimitsarealsocalculatedforthischart Variables X s thatinfluencetheresponseofadependentvariable Y Statisticalanalysesthatquantifytheriskofstatementsaboutpopulations basedonsampledata Inferentialstatisticsareusuallyhypothesistestsorconfidenceintervals TheBesttheprocesscanbe withonlyvariationduetowhitenoisepresent SeeEntitlement Z stAgraphusedtoanalysefactorialandfractionalfactorialdesignsofexperiments IndicatestheeffectonYwhentwoX sarechangedsimultaneously ThegreaterthedifferenceinslopesbetweentheX s thegreatertheinteraction Kurtosis L1Spreadsheet L2Spreadsheet LCL LowerControlLimit LeverageVariable Linearity gauge Longtermdata LSL m Macro MainEffectsPlot MasterBlackBelt Comparisonoftheheightofthepeakofadistributiontothespreadofthe tails Thekurtosisvalueis3foraperfectnormaldistribution ExcelspreadsheetfordiscretedatathatcalculatessubsystemZvaluesand rolls themintoasystem levelZvalue ReplacedbyProductReportinMinitabrelease11 2ExcelspreadsheetforcontinuousdatathatcalculatesZ standZ ltReplacedbyProcessReportsinMinitabrelease11 2ThelowercontrolboundaryonaStatisticalProcessControl SPC chart Alimitcalculatedasthemeanminus3standarddeviations Note SEM StandardErroroftheMean isusedfors stdev s sqrt n AnXvariablewithastronginfluenceontheYresponse OneoftheVitalFew Thedifferenceintheaccuracyofthegaugefromthelowendtothehighendofthetestrange Dataobtainedinsuchawaythatitcontainsassignablecausevariation blacknoise LowerSpecificationLimitThemeanoraverageofapopulationAminiprogramwithinasoftwarepackagedesignedtoprovideaparticularoutput e g GaugeR R Agraphusedtoanalyzefactorialandfractionalfactorialdesignsofexperiments ComparestheeffectonYofanXatthe high levelvs itseffectatthe low level Slopeofthelineonthegraphindicatessignificance Acoach mentorandtraineroftheSixSigmamethodologiesandtools Mean MeasurementsSystemsAnalysis Median Minitab NormalCurve NormalProbabilityPlot Normalize NormalizedAverageYield NullHypothesis Orthogonal p value ParetoAnalysis Theaverage Maybetheaverageofasample x bar ortheaverageofapopulation m See GaugeR R Themiddlevalueofasetofdata the50thpercentile AstatisticalsoftwarepackagecontainingthemajorityofSixSigmatools Awidely used commonly seendistributionwheredataissymmetricallydistributedaroundthemean bellcurve Agraphicalhypothesistestinwhichsampledataiscomparedtoa perfectnormal distribution Ho thesampledataisthesameasthe perfectnormal distribution Ha thesampledataisdifferent i e non normal Theprocessofconvertingnon normaldatathroughtheuseofatransformationfunction Theaverageyieldofaprocesswithmultiplestepsoroperations Y na Y rt 1 nSee Ho Literally rightangles Afeatureofawell definedexperimentthatallowsmaineffectstobeseparatedfrom2 wayandhigherorderinteractions aswellasquadratic squared terms Theprobabilityofmakinganalpha a error Avalueusedextensivelyinhypothesistesting Alsoreferredtoasthe observedlevelofsignificance p valuesarecomparedtothe acceptable levelofalphariskinordertomakedecisionsinhypothesistests Aproblemsolvingtoolthatallowscharacteristicstoberankedindescendingorderofimportance ParetoPrinciple Passive opportunity defect PointofInflexion PoissonApproximation Population PoweroftheTest ppm PracticalProblem PracticalSolution Precision Pre Control PrincipleofReverseLoading Probabilityofadefectp d The 80 20 rule Theprinciplethat20 ofthevariablescause80 ofthevariation Adefectoropportunitythatiscounteduponoccurrence butthatisnotpartoftheactivemonitoringprocess Pointonthenormalcurvewhereitchangesfromconvextoconcave Mathematicallydefinedbysettingthethirdderivativetozero AmathematicalapproximationforRolledThroughputYield givenDPU Y rt e DPU Alldataofinterestforaparticularprocess recordedornot Usuallymodelledwithsamples Thelikelihoodofdetectingbeneficialchange Representedas1 b Theprobabilityofrejectingthenullhypothesis Partspermilliondefective AdiscretemeasurementofdefectivesforlongtermdataTheoutputoftheMeasurephase AcharacterizationoftheZvalue centringandspreadforY TheoutputoftheControlPhase TheoptimisedXlevelsandcontrolplantomaintaintheprocessatitshighestZvalue Howcloselythedataisclusteredaroundtheirmean Describesthespreadofthedata AStatisticalProcessControl SPC methodthatallowsanoperatortotakeactiononaprocessbasedonwherethepartmeasurementsfallinanormaldistribution Partsarecodedred yelloworgreen Planningahead Needtodefinewhatdoyouwanttoknow sowhattool testshouldbeused sowhatdatadoyouneed The tail areaofthenormalcurve beyondthespecificationlimit s ProblemStatement ProcessCapability ProcessCharacterization ProcessMap ProcessOptimisation ProjectHopper QFD Quartiles R bar d RandomCauseVariation Range RationalSubgrouping Abriefbutsuccinctdescriptionoftheissueunderinvestigation Includesthepracticalandbusinessreasonsfortheproject Astatisticthatnumericallydescribeshowwelltheprocesscouldperformintheabsenceof blacknoise Examples Z st CpUnderstandingtheY sandX sinaprocess DevelopedthroughthetoolsoftheDefine MeasureandAnalysephases Aproblemsolvingtoolthatgraphicallydescribeseachsteporphaseinaprocess DefiningthebestoperatingpointforX sinaprocess DevelopedthroughtoolsoftheImprove Controlphases AstackofpotentialSixSigmaprojects tobepickedupbyBlackBeltsorGreenBeltswhenresourcesallow QualityFunctionDeployment ArigorousmethodofdeterminingtechnicalrequirementsandCTQ sfromthedefinitionofConsumerCues Quarters ofapopulation 1 4ofthedatafallbelowthefirstquartile 1 4ofthedatafallabovethe3rdquartile Anestimateofstandarddeviationusingtherangeofthedataandtabledadjustmentfactors UsedincalculationofcontrollimitsinMinitabGaugeR RXbargraphicaloutput See WhiteNoise Theinherentvariationoftheprocess freefromexternalinfluences Thelargestvalueinadatasetminusthesmallestvalueinthedataset Adatacollectiontechniquethatallowstheseparationofshorttermvariationfromlongtermvariation Regression Repeatability Gauge Repetition Reproducibility Gauge ResponseSurfaceExperimentResolution Gauge Resolution FractionalFactorial RolledThroughputYield Astatisticalmodellingtoolthatallowsdatatoberepresentedbyanequation UsedforcontinuousYresponses usuallywithcontinuousXinputs ThereisspecialtechniquewithinMinitabcalledLogisticRegressionwhichhandlesspecialformsofdiscreteX s Abilityofagaugetoconsistentlymeasurethesamepartwiththesameresults PartoftheoutputofaGaugeRi e afeaturespecifiedwithaspecificationtoonedecimalplacewouldrequireagaugewitharesolutionoftwodecimalplacesetc Aromannumeralthatindicatesthedegreeofconfoundinginafractionalfactorialdesign Higherresolutionindicateslessconfounding i e lessambiguityinthesourceofeffects Y rtTheproductofyieldsateachstepofaprocess CanbeestimatedusingthePoissonApproximation s Sample SessionWindow Shift Shorttermdata Sigma s SixSigmaTeamMember Skewness Specification Spread Stability Gauge StandardDeviation Thestandarddeviationofasample Ameasureofspread orvariability ofthedata s sqrt S x xbar n 1 Acollection subset ofdataintendedtorepresentthecharacteristicsoftheparentpopulation Oneofthe4Minitabwindows Usedforcommandentryanddataoutput Thedifferencebetweenshort termandlong termprocessvariation Z shift Z st Z ltDataobtainedinsuchawaythatitcontainsNOassignablecausevariation blacknoise Onlytheinherentprocessvariationisrepresented whichallowscalculationofZ stThestandarddeviationofapopulation AstakeholderintheSixSigmaprocess Apersonwhoneedstohaveanunderstandingofthemethodology butdoesnotformallyusethetools Evaluationofthesymmetryofadistribution Skewness 0forperfectsymmetry skewnessisnegativeifthedistributionisshiftedtotheright positiveifshiftedtotheleft Therequirementsofadesign usuallyexpressedasatarget ornominal valuewithanassociatedallowabletoleranceforvariation e g 5 00cm 0 05cm Howfarthedataisdistributedawayfromtheirmean Consistencyofmeasurementvaluesobtainedwiththesamegaugeonthesamesetofparts withmeasurementstakenatdifferenttimes Gaugeinstabilitycanleadtocalibrationissues Astatisticalmeasureofspreadordispersionfromameanvalue StandardErroroftheMean StandardNormalDeviate StandardOrder StarPoint s StatisticalProblem StatisticalProcessControl StatisticalSolution Statistics StepwiseRegression StructureTree Thestandarddeviationofxbar basedonasamplesizeofn Alsoacorrectionfactorforstandarddeviationofrelativelysmallsamplesizes 30 Reducesthestandarddeviationofthesamplebysqrt n SEM s sqrt n See Ztransform AfeatureoffactorialDesignofExperiments DoE thatdeterminestheorderofthehigh lowsettingsoftheX sforeachrunofanexperimentbyusingapre determinedpatternof 1 sand 1 sforeachX ExtremetestpointsinaCentralCompositeDesignofExperiments Foundbytakingthefourthrootofthenumberof Cubepoints factorialpoints inthedesignandadding subtractingthisvaluefromtheCentrePoint TheoutcomeoftheAnalyzephase Istheproblemcentring spreadorboth SPC Agraphicalmethodofmonitoringaprocessanddeterminingstatisticallywhentheprocessrequiresattentionbycomparingittoahistoricalmeanandcalculatedcontrollimitsat 3sigma OutputoftheImprovephase WheredotheX sneedtobesettocontroltheY Thestudyofvariation includingmethodsofdescribing quantifyingandreducingvariation aswellasestimatingrisks Aregressiontechniquewherethemodelisdevelopedonestepatatime addingXvariablesoneatatimetothemodelinorderoftheircontributiontochangesinY Aproblemsolvingtoollistingthecharacteristicsofinterestononesideofthepage andshowingcontributingfactorstothecharacteristicsasbranches Subgroup SustainedProcessCapabilityt test Target TechnicalRequirement TestSensitivity d s Tolerance TOP TotalOpportunities Transfer Transform TrivialManyX s UCL UpperControlLimit Unit Asampleoflikepartsorrelateddatatakenconsecutivelythatcontainsonlyinherentprocessvariation whitenoise CapabilityofaprocessinthelongtermZ ltAstatisticaltestusedtocomparetwomeans ortocompareameantoastandardvalue ThespecifiedordesiredaverageofaprocessPhysicalorprocesscharacteristicthatmustbecontrolledtoaddressaConsumerCue alsoknownas TheGap Astatisticusedtodeterminesamplesizeforhypothesistesting Comparesthedifferenceinmeanstothespreadofthedata Theamountofvariationallowablebydesigninaprocess Tolerance USL LSL Numberofopportunitiesperunittimesthenumberofunits ThelastphaseofaSixSigmaproject whereknowledgegainedistransferredtoallothersimilarprocesses iesynergy Anymathematicalrelationshipusedtotranslatedataofonespaceintodataofanotherspace e g transformstoconvertnon normaldatatonormaldata log reciprocal powerfunc
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 惯性测量基本原理课件
- 情感配音基础知识培训课件
- 四川省南充市阆中中学2026届高二化学第一学期期末复习检测模拟试题含答案
- 患者安全知识培训课件
- 父亲节策划方案
- 秋期小班个人工作方案
- “好书伴我成长”主题班会活动的解决方案
- 学校常规管理活动方案
- 水利分类考试题及答案
- 护卫支队考试题及答案
- 医院综合门诊部综合管理体系建设
- 2025年中医师承出师考试题库
- 2025年宜昌市猇亭区招聘化工园区专职工作人员(6人)笔试备考试题及答案详解(夺冠)
- uom无人机考试题库及答案2025
- 预防接种基础知识课件
- 护栏生产及安装方案(3篇)
- 厂区参观流程规范
- 污水厂培训课件
- 科协单位涉密管理制度
- 夏季安全生产试题及答案
- 体育教师专业考试试题及答案
评论
0/150
提交评论