已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Glossary 4 Block aerror arisk Accuracy Active opportunityordefect AdvocacyTeam AlternateHypothesis ANOVA ANOVAmethod GaugeR R Assignablecausevariation AttributeChart Attributedata Average Graphicaltooltoshowtherelationshipbetweenprocesscapability controlvariationduetooutsideinfluences See BlackNoise StatisticalProcessControl SPC chartfordiscretedata Includesp np canducharts Datathatcanbedescribedbylevels integervaluesorcategoriesonly SeeDiscretedata Thesumofalldatainasampledividedbythenumberofdatapointsinthesample SeeMean berror brisk Baselining Benchmarking BlackBelt BlackNoise Boxplot Brainstorming Centring CentringofXvariables CentralLimitTheorem Theerrormadeifsamenessisclaimed whentherealityisdifference e g acceptingbadparts Consumer sRisk Therisk probability ofmakingabetaerror frequentlysetat10 Evaluatingthecapabilityofaprocessasitstandstoday without tweaking i e passiveobservation Evaluatingthecapabilityofsimilarprocessestoquantifywhatconstitutes theBest ApersonwhosefulltimejobconsistsofapplicationofSixSigmatools methodsonprojects Processvariationdueto outsideinfluences SeeAssignableCauseVariation Graphshowingtheportionofadistributionbetweenthefirstandthirdpercentileswithina box Theboxplotalsoshowsthemedianofthedistributionandtheextremevalues Oftenusedtocomparepopulation AtechniqueusedbyanAdvocacyTeamto fore g developalistofpotentialX satthebeginningofproject Aprocesscharacteristicdescribinghowwellthemeanofthesamplecorrespondstothetargetvalue AmethodusedtotransformXvariablesinDoE sthatdevelophigherorder quadratic models reducescorrelationbetweenX s Afundamentalstatisticaltheoremstatingthatthedistributionofaveragesofacharacteristictendstobenormal evenwhentheparentpopulationishighlynon normal CentralCompositeDesign Champion ChampionReview Chi Squaredtest ClassicalYield CommonCauseVariation ComponentsSearch Confidence ConfidenceInterval Consumer ContinuousData ADesignofExperiments DoE methodwhereeachXistestedat5levels see StarPoints ACCDprovidesthecapabilitytomodelaprocesswithaquadraticequationORalinearequation Typicallyadirector someonewhocansupporttheSixSigmaprojectandhastheauthoritytoremovebarriersandprovideresources TakesanactivepartinProjectReview AregularmeetingtopresentSixSigmaprojects shareexperiencesandremoveroadblocks Hypothesistestfordiscretedata Evaluatestheprobabilitythatcountsindifferentcellsaredependentononeanother ortestsGoodnessofFittosomeaprioriprobabilitydistribution See FirstPassYield GoodunitsproduceddividedbyTotalUnitsProduced See WhiteNoise Theinherentvariationofaprocess freefromexternalinfluences Usuallymeasuredoverashorttimeperiod AmethodofscreeningforVitalFewX sinmanufacturedassemblies Alsoknownas PartSwapping Thecomplementofalpharisk Confidence 1 a Arangeofplausiblevaluesforapopulationparameter suchasmeanorstandarddeviation Theenduserofaproduct thehomeowner fore g Theconsumerisexternaltothebusiness Datathatcanbemeaningfullybrokendownintosmallerandsmallerincrements e g length temperatureetc ContourPlot ControlLimits CostofQuality Cp Cpk CQ CTQ CubePlot Customer DataWindow Defect DependentVariable AgraphusedtoanalyzeexperimentsofaCentralCompositeDesign TwoX scomprisetheaxes andlevelsofconstantYareshowninthebodyofgraph Resemblesatopographicalmap LinesonaStatisticalProcessControl SPC chartthatrepresentdecisioncriteriafortakingactionontheprocess Linesaredrawn 3standarddeviations s fromthemean Afinancialreconciliationofallthecostsassociatedwithdefects scrap rework concessionsetc StatisticusedtomeasureProcessCapability Assumesdataiscentredontarget SimilarinconcepttoZ stStatisticusedtomeasureProcessPerformance Doesnotassumecentreddata SimilarinconcepttoZ ltCommercialQuality Usedtocategorizenon manufacturingprojectsthatimpacttheconsumerand orcustomer Critical to Qualitycharacteristic Anaspectoftheproductorservicethatisimportanttothecustomer consumer Agraphusedforanalysisoftheresultsofafactorialdesignedexperiment DoE Showstestconditionsthatoptimizetheresponse Therecipientoftheoutputofaprocess Maybeinternal e g Assemblyisacustomeroffinishingshops orexternal e g Currys Bellingetc whothensellourproductstoconsumers ThespreadsheetwindowinMinitabwheredataisenteredforanalysis Anyaspectofapartorprocessthatdoesnotconformtorequirements Theoutputofaprocess The Y response DescriptiveStatistics DesignofExperiments DoE DiscreteData Dotplot DPMO DPO DPU e ExponentialFunction Entitlement ExecutiveSummary F test Mean StandardDeviation Varianceandothervaluescalculatedfromsamplecharacteristics Alsoincludesassortedgraphs Astatisticalfieldofstudywhereindependentvariables X s aresystematicallymanipulatedandtheresponseobserved UsedtodemonstratewhichX saretheVitalFew andtooptimizetheresponse Datathatcanonlybedescribedbylevels i e pass fail operatora b c integervalues e g numberofdefects Datathatcannotbebrokendownintofinerincrements Frequencydiagramrepresentingdataby dots alongahorizontalaxis Generallyusedasanalternativetoahistogramforsmallsamplesizes DefectsPerMillionOpportunities 1 000 000multipliedbytotalnumberofdefects dividedbythetotalnumberofopportunities Ametricfordefectsequivalenttoppmusedfordefectives DefectsPerOpportunity totalnumberofdefectsdividedbytotalnumberofopportunities UsedtoentertheNormalTabletoobtainZvalues Defectsperunit totalnumberofdefectsdividedbytotalnumberofunits UsedprimarilytocalculateRolledThroughputYield Y rt throughthePoissonformulaY rt e DPU Amathematicconstantroughlyequalto2 718Mathematicalidentity ln e 1Z stThebesttheprocesscanbe WhattheprocesswouldlooklikeifallAssignableCauseVariationwascontrolled ThefirstpageofoutputfromtheMinitabProcessCapabilityselection Atesttocomparevariancesof2ormoresamples andtocomparetheequalityoftwoormoremeans inANOVA FactorialExperiment FractionalFactorialExperiment FirstPassYield FMEA FunctionalOwner GaugeXBRmethod GanttChart GaugeR R GreenBelt Ha Ho Adesignedexperiment DoE whichinvolvestestingofallpossiblecombinationsofindependent X variables Adesignedexperiment DoE whichinvolvestestingafractionofallpossiblecombinationsofindependent X variablesinafullFactorialexperiment Resultsinfewertestruns See ClassicalYield Equaltothenumberofgoodunitsproduceddividedbythetotalnumberofunitsproduced FailureModeandEffectsAnalysis ateam basedprocedurethatidentifiesanddocumentsallpossiblefailuremodes effects causesandassociatedcorrectiveactions Thepersonwithfinancialresponsibilityfortheprocessunderconsideration GaugeR Rmethod anoptioninMinitab Aprojectmanagementtoolthatgraphsmilestonesvs thecalendar Barsareusedtoindicatebothplannedandactualdurationoftasks Ameansofdeterminingtheacceptabilityofthevariabilityinthegaugingsystemforuseintheprocess ApersonwhousesSixSigmatoolsandmethodologyinthecourseoftheirwork andwhoalwayshasaSixSigmaprojectactiveintheirplaceofwork AlternateHypothesis hypothesisofdifference Thehypothesisbeingproveninastatisticalhypothesistest Nullhypothesis hypothesisofsameness Thestartingassumptioninastatisticalhypothesistest NB Thenullhypothesiscannotbeproved Histogram HomogeneityofVariance Hypothesistest I MRChart IndependentVariable Inferentialstatistics InherentProcessCapability Interactionplot Afrequencydiagramcomposedofrectangularbarswhoserelativeheightsindicatethenumberofcounts orrelativefrequency ataparticularlevel AmenuselectioninMinitabunderwhichtheF test comparisonofvariances isperformedAnyofseveralstatisticaltestsof2ormoresamplesfrompopulations Usedtodetermineiftheobserveddifferencescanbeattributabletochancealone Theresultofthetestistoeitheracceptorrejectthealternatehypothesis Ha t test F testandChi Squaredtestareexamples Individual MovingRangechart aStatisticalProcessControl SPC chartinwhichtheuppergraphisusedtoplotindividualdatapointscomparedtocalculatedcontrollimits thelowergraph MovingRange plotsthedifferencebetweensequentialdataaspointsonthechart Controllimitsarealsocalculatedforthischart Variables X s thatinfluencetheresponseofadependentvariable Y Statisticalanalysesthatquantifytheriskofstatementsaboutpopulations basedonsampledata Inferentialstatisticsareusuallyhypothesistestsorconfidenceintervals TheBesttheprocesscanbe withonlyvariationduetowhitenoisepresent SeeEntitlement Z stAgraphusedtoanalysefactorialandfractionalfactorialdesignsofexperiments IndicatestheeffectonYwhentwoX sarechangedsimultaneously ThegreaterthedifferenceinslopesbetweentheX s thegreatertheinteraction Kurtosis L1Spreadsheet L2Spreadsheet LCL LowerControlLimit LeverageVariable Linearity gauge Longtermdata LSL m Macro MainEffectsPlot MasterBlackBelt Comparisonoftheheightofthepeakofadistributiontothespreadofthe tails Thekurtosisvalueis3foraperfectnormaldistribution ExcelspreadsheetfordiscretedatathatcalculatessubsystemZvaluesand rolls themintoasystem levelZvalue ReplacedbyProductReportinMinitabrelease11 2ExcelspreadsheetforcontinuousdatathatcalculatesZ standZ ltReplacedbyProcessReportsinMinitabrelease11 2ThelowercontrolboundaryonaStatisticalProcessControl SPC chart Alimitcalculatedasthemeanminus3standarddeviations Note SEM StandardErroroftheMean isusedfors stdev s sqrt n AnXvariablewithastronginfluenceontheYresponse OneoftheVitalFew Thedifferenceintheaccuracyofthegaugefromthelowendtothehighendofthetestrange Dataobtainedinsuchawaythatitcontainsassignablecausevariation blacknoise LowerSpecificationLimitThemeanoraverageofapopulationAminiprogramwithinasoftwarepackagedesignedtoprovideaparticularoutput e g GaugeR R Agraphusedtoanalyzefactorialandfractionalfactorialdesignsofexperiments ComparestheeffectonYofanXatthe high levelvs itseffectatthe low level Slopeofthelineonthegraphindicatessignificance Acoach mentorandtraineroftheSixSigmamethodologiesandtools Mean MeasurementsSystemsAnalysis Median Minitab NormalCurve NormalProbabilityPlot Normalize NormalizedAverageYield NullHypothesis Orthogonal p value ParetoAnalysis Theaverage Maybetheaverageofasample x bar ortheaverageofapopulation m See GaugeR R Themiddlevalueofasetofdata the50thpercentile AstatisticalsoftwarepackagecontainingthemajorityofSixSigmatools Awidely used commonly seendistributionwheredataissymmetricallydistributedaroundthemean bellcurve Agraphicalhypothesistestinwhichsampledataiscomparedtoa perfectnormal distribution Ho thesampledataisthesameasthe perfectnormal distribution Ha thesampledataisdifferent i e non normal Theprocessofconvertingnon normaldatathroughtheuseofatransformationfunction Theaverageyieldofaprocesswithmultiplestepsoroperations Y na Y rt 1 nSee Ho Literally rightangles Afeatureofawell definedexperimentthatallowsmaineffectstobeseparatedfrom2 wayandhigherorderinteractions aswellasquadratic squared terms Theprobabilityofmakinganalpha a error Avalueusedextensivelyinhypothesistesting Alsoreferredtoasthe observedlevelofsignificance p valuesarecomparedtothe acceptable levelofalphariskinordertomakedecisionsinhypothesistests Aproblemsolvingtoolthatallowscharacteristicstoberankedindescendingorderofimportance ParetoPrinciple Passive opportunity defect PointofInflexion PoissonApproximation Population PoweroftheTest ppm PracticalProblem PracticalSolution Precision Pre Control PrincipleofReverseLoading Probabilityofadefectp d The 80 20 rule Theprinciplethat20 ofthevariablescause80 ofthevariation Adefectoropportunitythatiscounteduponoccurrence butthatisnotpartoftheactivemonitoringprocess Pointonthenormalcurvewhereitchangesfromconvextoconcave Mathematicallydefinedbysettingthethirdderivativetozero AmathematicalapproximationforRolledThroughputYield givenDPU Y rt e DPU Alldataofinterestforaparticularprocess recordedornot Usuallymodelledwithsamples Thelikelihoodofdetectingbeneficialchange Representedas1 b Theprobabilityofrejectingthenullhypothesis Partspermilliondefective AdiscretemeasurementofdefectivesforlongtermdataTheoutputoftheMeasurephase AcharacterizationoftheZvalue centringandspreadforY TheoutputoftheControlPhase TheoptimisedXlevelsandcontrolplantomaintaintheprocessatitshighestZvalue Howcloselythedataisclusteredaroundtheirmean Describesthespreadofthedata AStatisticalProcessControl SPC methodthatallowsanoperatortotakeactiononaprocessbasedonwherethepartmeasurementsfallinanormaldistribution Partsarecodedred yelloworgreen Planningahead Needtodefinewhatdoyouwanttoknow sowhattool testshouldbeused sowhatdatadoyouneed The tail areaofthenormalcurve beyondthespecificationlimit s ProblemStatement ProcessCapability ProcessCharacterization ProcessMap ProcessOptimisation ProjectHopper QFD Quartiles R bar d RandomCauseVariation Range RationalSubgrouping Abriefbutsuccinctdescriptionoftheissueunderinvestigation Includesthepracticalandbusinessreasonsfortheproject Astatisticthatnumericallydescribeshowwelltheprocesscouldperformintheabsenceof blacknoise Examples Z st CpUnderstandingtheY sandX sinaprocess DevelopedthroughthetoolsoftheDefine MeasureandAnalysephases Aproblemsolvingtoolthatgraphicallydescribeseachsteporphaseinaprocess DefiningthebestoperatingpointforX sinaprocess DevelopedthroughtoolsoftheImprove Controlphases AstackofpotentialSixSigmaprojects tobepickedupbyBlackBeltsorGreenBeltswhenresourcesallow QualityFunctionDeployment ArigorousmethodofdeterminingtechnicalrequirementsandCTQ sfromthedefinitionofConsumerCues Quarters ofapopulation 1 4ofthedatafallbelowthefirstquartile 1 4ofthedatafallabovethe3rdquartile Anestimateofstandarddeviationusingtherangeofthedataandtabledadjustmentfactors UsedincalculationofcontrollimitsinMinitabGaugeR RXbargraphicaloutput See WhiteNoise Theinherentvariationoftheprocess freefromexternalinfluences Thelargestvalueinadatasetminusthesmallestvalueinthedataset Adatacollectiontechniquethatallowstheseparationofshorttermvariationfromlongtermvariation Regression Repeatability Gauge Repetition Reproducibility Gauge ResponseSurfaceExperimentResolution Gauge Resolution FractionalFactorial RolledThroughputYield Astatisticalmodellingtoolthatallowsdatatoberepresentedbyanequation UsedforcontinuousYresponses usuallywithcontinuousXinputs ThereisspecialtechniquewithinMinitabcalledLogisticRegressionwhichhandlesspecialformsofdiscreteX s Abilityofagaugetoconsistentlymeasurethesamepartwiththesameresults PartoftheoutputofaGaugeRi e afeaturespecifiedwithaspecificationtoonedecimalplacewouldrequireagaugewitharesolutionoftwodecimalplacesetc Aromannumeralthatindicatesthedegreeofconfoundinginafractionalfactorialdesign Higherresolutionindicateslessconfounding i e lessambiguityinthesourceofeffects Y rtTheproductofyieldsateachstepofaprocess CanbeestimatedusingthePoissonApproximation s Sample SessionWindow Shift Shorttermdata Sigma s SixSigmaTeamMember Skewness Specification Spread Stability Gauge StandardDeviation Thestandarddeviationofasample Ameasureofspread orvariability ofthedata s sqrt S x xbar n 1 Acollection subset ofdataintendedtorepresentthecharacteristicsoftheparentpopulation Oneofthe4Minitabwindows Usedforcommandentryanddataoutput Thedifferencebetweenshort termandlong termprocessvariation Z shift Z st Z ltDataobtainedinsuchawaythatitcontainsNOassignablecausevariation blacknoise Onlytheinherentprocessvariationisrepresented whichallowscalculationofZ stThestandarddeviationofapopulation AstakeholderintheSixSigmaprocess Apersonwhoneedstohaveanunderstandingofthemethodology butdoesnotformallyusethetools Evaluationofthesymmetryofadistribution Skewness 0forperfectsymmetry skewnessisnegativeifthedistributionisshiftedtotheright positiveifshiftedtotheleft Therequirementsofadesign usuallyexpressedasatarget ornominal valuewithanassociatedallowabletoleranceforvariation e g 5 00cm 0 05cm Howfarthedataisdistributedawayfromtheirmean Consistencyofmeasurementvaluesobtainedwiththesamegaugeonthesamesetofparts withmeasurementstakenatdifferenttimes Gaugeinstabilitycanleadtocalibrationissues Astatisticalmeasureofspreadordispersionfromameanvalue StandardErroroftheMean StandardNormalDeviate StandardOrder StarPoint s StatisticalProblem StatisticalProcessControl StatisticalSolution Statistics StepwiseRegression StructureTree Thestandarddeviationofxbar basedonasamplesizeofn Alsoacorrectionfactorforstandarddeviationofrelativelysmallsamplesizes 30 Reducesthestandarddeviationofthesamplebysqrt n SEM s sqrt n See Ztransform AfeatureoffactorialDesignofExperiments DoE thatdeterminestheorderofthehigh lowsettingsoftheX sforeachrunofanexperimentbyusingapre determinedpatternof 1 sand 1 sforeachX ExtremetestpointsinaCentralCompositeDesignofExperiments Foundbytakingthefourthrootofthenumberof Cubepoints factorialpoints inthedesignandadding subtractingthisvaluefromtheCentrePoint TheoutcomeoftheAnalyzephase Istheproblemcentring spreadorboth SPC Agraphicalmethodofmonitoringaprocessanddeterminingstatisticallywhentheprocessrequiresattentionbycomparingittoahistoricalmeanandcalculatedcontrollimitsat 3sigma OutputoftheImprovephase WheredotheX sneedtobesettocontroltheY Thestudyofvariation includingmethodsofdescribing quantifyingandreducingvariation aswellasestimatingrisks Aregressiontechniquewherethemodelisdevelopedonestepatatime addingXvariablesoneatatimetothemodelinorderoftheircontributiontochangesinY Aproblemsolvingtoollistingthecharacteristicsofinterestononesideofthepage andshowingcontributingfactorstothecharacteristicsasbranches Subgroup SustainedProcessCapabilityt test Target TechnicalRequirement TestSensitivity d s Tolerance TOP TotalOpportunities Transfer Transform TrivialManyX s UCL UpperControlLimit Unit Asampleoflikepartsorrelateddatatakenconsecutivelythatcontainsonlyinherentprocessvariation whitenoise CapabilityofaprocessinthelongtermZ ltAstatisticaltestusedtocomparetwomeans ortocompareameantoastandardvalue ThespecifiedordesiredaverageofaprocessPhysicalorprocesscharacteristicthatmustbecontrolledtoaddressaConsumerCue alsoknownas TheGap Astatisticusedtodeterminesamplesizeforhypothesistesting Comparesthedifferenceinmeanstothespreadofthedata Theamountofvariationallowablebydesigninaprocess Tolerance USL LSL Numberofopportunitiesperunittimesthenumberofunits ThelastphaseofaSixSigmaproject whereknowledgegainedistransferredtoallothersimilarprocesses iesynergy Anymathematicalrelationshipusedtotranslatedataofonespaceintodataofanotherspace e g transformstoconvertnon normaldatatonormaldata log reciprocal powerfunc
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年西安汽车职业大学单招职业技能考试模拟测试卷附答案
- 2026年湖州学院单招(计算机)测试模拟题库及答案1套
- 2026年邵阳学院辅导员招聘备考题库附答案
- 2026年吉林科技职业技术学院单招职业技能测试模拟测试卷附答案
- 2026年湘中幼儿师范高等专科学校单招综合素质考试题库附答案
- 2026年天府新区航空旅游职业学院单招(计算机)测试备考题库必考题
- 2026年焦作师范高等专科学校单招职业倾向性考试模拟测试卷附答案
- 2026年四川希望汽车职业学院单招职业倾向性测试题库附答案
- 2026年南昌理工学院单招(计算机)测试模拟题库附答案
- 2026年宁波大学科学技术学院单招(计算机)考试备考题库附答案
- GB/T 9755-2024合成树脂乳液墙面涂料
- 市政雨污水管排水工程监理实施细则
- 《工程勘察设计收费标准》(2002年修订本)-完整版-1
- 建筑工地消防安全知识培训
- 《煤矿防治水细则》全文
- 江苏省南通市名校联盟2024~2025学年高三上学期八月模拟演练性月考英语试题英语
- 2023年江苏省高等教育自学考试旅游资源规划与开发试卷3共八套会了这八套通过是没问题的不信试试看
- 2024年山东省高中自主招生数学模拟试卷试题(含答案)
- 纯种宠物繁殖中的遗传多样性管理
- 2024届福建省福州一中学数学七年级上册期末联考试题含解析
- 车间经理个人成长计划书
评论
0/150
提交评论